Academia.eduAcademia.edu

Outline

Abstraction in real time process algebra

1992, Springer eBooks

https://doi.org/10.1007/BFB0031999

Abstract

In this paper we extend Real Time Process Algebra by the silent step r. We start by giving the operational semantics and we find a characterizing law of which the soundness and the completeness is proven. By adding the integral construct we can interpret symbolic (untimed) process terms as timed processes. We investigate the resulting r-equivalence and come to a delay bisirnulation with a stronger root condition. Finally we test the applicability of this notion of real time abstraction by proving the PAR protocol (Positive Acknowledgement with Retransmission) correct.

References (17)

  1. J .C.M. Baeten, editor. Applications of Process Algebra. Cambridge Tracts in Theoretical Computer Science 17. Cambridge University Press, 1990.
  2. J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal Aspects of Computing Science, 3(2):142-188, 1991.
  3. J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in The- oretical Computer Science 18. Cambridge University Press, 1990.
  4. W.P. de Roever. Foundations of computer science: Leaving the ivory tower. Bulletin of the European Association for Theoretical Computer Science, 44:455- 492, 1989.
  5. R.J. van Glabbeek. Bounded nondeterminism and the approximation induc- tion principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors, Proceedings STAGS 87, volume 247 of Lecture Notes in Computer Science, pages 336-347. Springer-Verlag, 1987.
  6. J.F. Groote. Transition system specifications with negative premises. Report CS-R8950, CWI, Amsterdam, 1989. An extended abstract appeared in J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458, pages 332-341. Springer-Verlag, 1990.
  7. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim- ulation semantics (extended abstract). In G.X. Ritter, editor, Information Pro- cessing 89, pages 613-618. North-Holland, 1989.
  8. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.
  9. M. Hennessy and T. Regan. A temporal process algebra. Report 2/90, Computer Science Department, University of Sussex, 1990.
  10. A.S. Klusener. Completeness in realtime process algebra. Report CS-R9106, CWI, Amsterdam, 1991. An extended abstract appeared in J.C.M. Baeten and J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, LNCS 527 , pages 376-392. Springer-Verlag, 1991.
  11. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science. Springer-Verlag, 1980.
  12. R. Milner. Communication and concurrency. Prentice Hall International, 1989.
  13. F. Moller and C. Tofts. A temporal calculus of communicating systems. In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in Computer Science, pages 401-415. Springer- Verlag, 1990.
  14. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.
  15. M. Reed. A hierarchy of domains for real-time distributed computing. In Math- ematical Foundations of Programming Language Semantics. Springer-Verlag, 1989.
  16. M. Reed and A.W. Roscoe. A timed model for communicating sequential pro- cesses. Theoretical Computer Science, 58:249-261, 1988.
  17. Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lec- ture Notes in Computer Science, pages 502-520. Springer-Verlag, 1990.