Classification of regular maps of Euler characteristic −3p
2012, Journal of Combinatorial Theory, Series B
https://doi.org/10.1016/J.JCTB.2011.11.003Abstract
In an earlier paper by A. Breda, R. Nedela and J. Širáň, a classification was given of all regular maps on surfaces of negative prime Euler characteristic. In this article we extend the classification to surfaces with Euler characteristic −3p (equivalently, to non-orientable surfaces of genus 3p + 2) for all odd primes p.
References (18)
- W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997) 235-265.
- A. Breda d'Azevedo, R. Nedela, J. Širá ň, Classification of regular maps of negative prime Euler characteristic, Trans. Amer. Math. Soc. 357 (2005) 4175-4190.
- M.D.E. Conder, Regular maps and hypermaps of Euler characteristic -1 to -200, J. Combin. Theory Ser. B 99 (2009) 455- 459, with associated lists of computational data available at http://www.math.auckland.ac.nz/~conder/hypermaps.html.
- M. Conder, P. Dobcsányi, Determination of all regular maps of small genus, J. Combin. Theory Ser. B 81 (2) (2001) 224-242.
- M. Conder, P. Potočnik, J. Širá ň, Regular hypermaps over projective linear groups, J. Aust. Math. Soc. 85 (2008) 155-175.
- M. Conder, P. Potočnik, J. Širá ň, Regular maps with almost Sylow-cyclic automorphism groups, and classification of regular maps with Euler characteristic -p 2 , J. Algebra 324 (2010) 2620-2635.
- M. Conder, J. Širá ň, T. Tucker, The genera, reflexibility, and simplicity of regular maps, J. Eur. Math. Soc. 12 (2010) 343-364.
- E. Dickson, Linear Groups with an Exposition of Galois Field Theory, Teubner, Leipzig, 1901 (reprint Dover Publ., New York, 1958).
- W. Feit, J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963) 775-1029.
- D. Gorenstein, Finite Groups, 2nd ed., Chelsea Publishing Co., 1980.
- D. Gorenstein, J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, J. of Algebra 2 (1965) 85-151;
- D. Gorenstein, J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, II, J. of Algebra 2 (1965) 218-270;
- D. Gorenstein, J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, III, J. of Algebra 2 (1965) 334-393.
- G.A. Jones, D. Singerman, Belyȋ functions, hypermaps, and Galois groups, Bull. Lond. Math. Soc. 28 (1996) 561-590.
- R. Nedela, Regular maps -combinatorial objects relating different fields of mathematics, J. Korean Math. Soc. 38 (5) (2001) 1069-1105.
- R. Nedela, M. Škoviera, Exponents of orientable maps, Proc. Lond. Math. Soc. (3) 75 (1997) 1-31.
- D.J.S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer, 1996.
- J. Širá ň, Regular maps on a given surface: A survey, in: R. Thomas, et al. (Eds.), Topics Discrete Mathematics, Springer, Berlin, 2006, pp. 591-609.