Academia.eduAcademia.edu

Outline

Classification of regular maps of Euler characteristic −3p

2012, Journal of Combinatorial Theory, Series B

https://doi.org/10.1016/J.JCTB.2011.11.003

Abstract

In an earlier paper by A. Breda, R. Nedela and J. Širáň, a classification was given of all regular maps on surfaces of negative prime Euler characteristic. In this article we extend the classification to surfaces with Euler characteristic −3p (equivalently, to non-orientable surfaces of genus 3p + 2) for all odd primes p.

References (18)

  1. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997) 235-265.
  2. A. Breda d'Azevedo, R. Nedela, J. Širá ň, Classification of regular maps of negative prime Euler characteristic, Trans. Amer. Math. Soc. 357 (2005) 4175-4190.
  3. M.D.E. Conder, Regular maps and hypermaps of Euler characteristic -1 to -200, J. Combin. Theory Ser. B 99 (2009) 455- 459, with associated lists of computational data available at http://www.math.auckland.ac.nz/~conder/hypermaps.html.
  4. M. Conder, P. Dobcsányi, Determination of all regular maps of small genus, J. Combin. Theory Ser. B 81 (2) (2001) 224-242.
  5. M. Conder, P. Potočnik, J. Širá ň, Regular hypermaps over projective linear groups, J. Aust. Math. Soc. 85 (2008) 155-175.
  6. M. Conder, P. Potočnik, J. Širá ň, Regular maps with almost Sylow-cyclic automorphism groups, and classification of regular maps with Euler characteristic -p 2 , J. Algebra 324 (2010) 2620-2635.
  7. M. Conder, J. Širá ň, T. Tucker, The genera, reflexibility, and simplicity of regular maps, J. Eur. Math. Soc. 12 (2010) 343-364.
  8. E. Dickson, Linear Groups with an Exposition of Galois Field Theory, Teubner, Leipzig, 1901 (reprint Dover Publ., New York, 1958).
  9. W. Feit, J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963) 775-1029.
  10. D. Gorenstein, Finite Groups, 2nd ed., Chelsea Publishing Co., 1980.
  11. D. Gorenstein, J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, J. of Algebra 2 (1965) 85-151;
  12. D. Gorenstein, J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, II, J. of Algebra 2 (1965) 218-270;
  13. D. Gorenstein, J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, III, J. of Algebra 2 (1965) 334-393.
  14. G.A. Jones, D. Singerman, Belyȋ functions, hypermaps, and Galois groups, Bull. Lond. Math. Soc. 28 (1996) 561-590.
  15. R. Nedela, Regular maps -combinatorial objects relating different fields of mathematics, J. Korean Math. Soc. 38 (5) (2001) 1069-1105.
  16. R. Nedela, M. Škoviera, Exponents of orientable maps, Proc. Lond. Math. Soc. (3) 75 (1997) 1-31.
  17. D.J.S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer, 1996.
  18. J. Širá ň, Regular maps on a given surface: A survey, in: R. Thomas, et al. (Eds.), Topics Discrete Mathematics, Springer, Berlin, 2006, pp. 591-609.