Academia.eduAcademia.edu

Outline

Recycling Concrete to Aggregates. Implications on CO2 Footprint

RawMat 2023

https://doi.org/10.3390/MATERPROC2023015028

Abstract

Recycling Concrete to Aggregates. Implications on CO 2 Footprint. Mater.

References (58)

  1. Adesina, A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ. Chall. 2020, 1, 100004.
  2. Warburton, Roger. "Global Warming Has Concrete Problem When It Comes to CO 2 ." EcoRi News 2019. Available online: https://www.ecori.org/climate-change/2019/10/4/global-warming-has-a-co2ncrete-problem (accessed on 2 December 2022).
  3. Verein Deutscher, Zementwerk. Available online: https://www.statista.com/statistics/373845/global-cement-production- forecast/ (accessed on 2 December 2022).
  4. Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A comprehensive review on recycled aggregate and recycled aggregate concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [CrossRef]
  5. Ginga, C.P.; Ongpeng, J.M.C.; Daly, M.K.M. Circular economy on construction and demolition waste: A literature review on material recovery and production. Mater 2020, 13, 2970. [CrossRef] [PubMed]
  6. UNEP. Sand and Sustainability: Finding New Solutions for Environmental Governance of Global Sand Resources; United Nations Environment Programme: Geneva, Switzerland, 2019.
  7. Wang, J.; Wu, H.; Tam, V.W.; Zuo, J. Considering life-cycle environmental impacts and society's willingness for optimizing construction and demolition waste management fee: An empirical study of China. J. Clean. Prod. 2019, 206, 1004-1014. [CrossRef]
  8. Kabirifar, K.; Mojtahedi, M.; Wang, C.C.; Tam, V.W. Effective construction and demolition waste management assessment through waste management hierarchy; a case of Australian large construction companies. J. Clean. Prod. 2021, 312, 12. [CrossRef]
  9. Arivalagan, S. Sustainable studies on concrete with GGBS as a replacement material in cement. JJCE 2014, 8, 263-270.
  10. Dhir, R.K.; El-Mohr, M.A.K.; Dyer, T.D. Chloride binding in GGBS concrete. Cem. Concr. Res. 1996, 26, 1767-1773. [CrossRef]
  11. Liu, M. Self-compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 2010, 24, 1245-1252. [CrossRef]
  12. de Castro, S.; de Brito, J. Evaluation of the durability of concrete made with crushed glass aggregates. J. Clean. Prod. 2013, 41, 7-14. [CrossRef]
  13. Park, S.B.; Lee, B.C.; Kim, J.H. Studies on mechanical properties of concrete containing waste glass aggregate. Cem. Concr. Res. 2004, 34, 2181-2189. [CrossRef]
  14. Ganesan, K.; Rajagopal, K.; Thangavel, K. Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Constr. Build. Mater. 2008, 22, 1675-1683. [CrossRef]
  15. Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Lampropoulou, P.; Xanthopoulou, V.; Koutsovitis, P.; Koukouzas, N.; Lagogian- nis, I.; Lykokanellos, G.; Golfinopoulos, A. An Innovative Experimental Petrographic Study of Concrete Produced by Animal Bones and Human Hair Fibers. Sustainability 2021, 13, 8107. [CrossRef]
  16. Shi, C.; Jiménez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750-763. [CrossRef]
  17. ISO 14040; Environmental Management-Life Cycle Assessment-Principles and Framework. ISO: Geneva, Switzerland, 2006.
  18. Bird, N.; Cowie, A.; Cherubini, F.; Jungmeier, G. Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy; IEA Bioenergy: Rotorua, New Zealand, 2011.
  19. Ghanbari, M.; Abbasi, A.M.; Ravanshadnia, M. Production of natural and recycled aggregates: The environmental impacts of energy consumption and CO 2 emissions. J. Mater. Cycles Waste Manag. 2018, 20, 810-822. [CrossRef]
  20. Environmental Protection Agency, EPA. Available online: https://www.epa.gov/air-emissions-factors-and-quantification/basic- information-air-emissions-factors-and-quantification (accessed on 31 October 2022).
  21. Schlender, R.M.; Bruckner, R.H. Setting up for recovery of construction & demolition waste. Solid Waste Power 1993, 7, 28.
  22. Silva, R.V.; De Brito, J.; Dhir, R.K. Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. J. Clean. Prod. 2017, 143, 598-614. [CrossRef]
  23. Whittaker, M.J.; Grigoriadis, K.; Soutsos, M.; Sha, W.; Klinge, A.; Paganoni, S.; Casado, M.; Brander, L.; Mousavi, M.; Scullin, M.; et al. Novel construction and demolition waste (CDW) treatment and uses to maximize reuse and recycling. Adv. Build. Energy Res. 2021, 15, 253-269. [CrossRef]
  24. Waskow, R.P.; Dos Santos, V.L.; Ambrós, W.M.; Sampaio, C.H.; Passuello, A.; Tubino, R.M. Optimization and dust emissions analysis of the air jigging technology applied to the recycling of construction and demolition waste. J. Environ. Manag. 2020, 266, 110614. [CrossRef]
  25. Silva, R.V.; De Brito, J.; Dhir, R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201-217. [CrossRef]
  26. Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.M.; Murali, G.; Vatin, N.; Klyuev, S.; Ozbakkaloglu, T.; Vasilev, Y. Use of recycled concrete aggregates in production of green cement-based concrete composites: A review. Crystals 2021, 11, 232. [CrossRef]
  27. Jo, B.W.; Park, S.K.; Park, J.C. Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Constr. Build. Mater. 2008, 22, 2281-2291. [CrossRef]
  28. Dimitriou, G.; Savva, P.; Petrou, M.F. Enhancing mechanical and durability properties of recycled aggregate concrete. Constr. Build. Mater. 2018, 158, 228-235. [CrossRef]
  29. Li, X. Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete. Resour. Conserv. Recycl. 2008, 53, 36-44. [CrossRef]
  30. Smith, J.T. Recycled Concrete Aggregate-A Viable Aggregate Source for Concrete Pavements. Ph.D. Dissertation, Department of Civil Engineering, University of Waterloo, Waterloo, ON, Canada, 2010.
  31. Liu, J.; Chen, B. Property of high strength concrete made with field-demolished concrete aggregates. In Proceedings of the Transportation Research Board 87th Annual Meeting, Washington, DC, USA, 13 January 2008.
  32. Sturtevant, J.R. Performance of Rigid Pavements Containing Recycled Concrete Aggregates. Master's Thesis, University of New Hampshire, Durham, NH, USA, 2007.
  33. Lotfi, S.; Deja, J.; Rem, P.; Mróz, R.; van Roekel, E.; van der Stelt, H. Mechanical recycling of EOL concrete into high-grade aggregates. Resour. Conserv. Recycl. 2014, 87, 117-125. [CrossRef]
  34. Nováková, I.; Mikulica, K. Properties of concrete with partial replacement of natural aggregate by recycled concrete aggregates from precast production. Procedia Eng. 2016, 151, 360-367. [CrossRef]
  35. Silva, R.V.; De Brito, J.; Dhir, R.K. Fresh-state performance of recycled aggregate concrete: A review. Constr. Build. Mater. 2018, 178, 19-31. [CrossRef]
  36. Silva, R.V.; Neves, R.; De Brito, J.; Dhir, R.K. Carbonation behavior of recycled aggregate concrete. Cem. Concr. Compos. 2015, 62, 22-32. [CrossRef]
  37. Deng, Z.; Liu, B.; Huang, Y. Investigation of carbonation resistance of recycled aggregate concrete. Mater. Sci. Eng. 2021, 1028, 012014. [CrossRef]
  38. Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete-A review. Cem. Concr. Compos. 2018, 89, 251-259. [CrossRef]
  39. Huda, S.B.; Shahria Alam, M. Mechanical and freeze-thaw durability properties of recycled aggregate concrete made with recycled coarse aggregate. J. Mater. Civ. Eng. 2015, 27, 04015003. [CrossRef]
  40. Barreto Santos, M.; De Brito, J.; Santos Silva, A. A review on alkali-silica reaction evolution in recycled aggregate concrete. J. Mater. 2020, 13, 2625. [CrossRef] [PubMed]
  41. Lv, Z.; Liu, C.; Zhu, C.; Bai, G.; Qi, H. Experimental study on a prediction model of the shrinkage and creep of recycled aggregate concrete. J. Appl. Sci. 2019, 9, 4322. [CrossRef]
  42. Domingo-Cabo, A.; Lázaro, C.; López-Gayarre, F.; Serrano-López, M.A.; Serna, P.; Castaño-Tabares, J.O. Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2545-2553. [CrossRef]
  43. Matias, D.; de Brito, J.; Rosa, A.; Pedro, D. Durability of concrete with recycled coarse aggregates: Influence of superplasticizers. J. Mater. Civ. Eng. 2014, 26, 06014011. [CrossRef]
  44. Silva, R.V.; De Brito, J.; Dhir, R.K. Comparative analysis of existing prediction models on the creep behavior of recycled aggregate concrete. Eng. Struct. 2015, 100, 31-42. [CrossRef]
  45. Cachim, P.B. Mechanical properties of brick aggregate concrete. Constr. Build. Mater. 2009, 23, 1292-1297. [CrossRef]
  46. Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735-742. [CrossRef]
  47. López-Uceda, A.; Ayuso, J.; López, M.; Jimenez, J.R.; Agrela, F.; Sierra, M.J. Properties of non-structural concrete made with mixed recycled aggregates and low cement content. J. Mater. 2016, 9, 74. [CrossRef] [PubMed]
  48. Medina, C.; De Rojas, M.S.; Frías, M. Properties of recycled ceramic aggregate concretes: Water resistance. Cem. Concr. Compos. 2013, 40, 21-29. [CrossRef]
  49. Rahal, K. Mechanical properties of concrete with recycled coarse aggregate. Build. Environ. 2007, 42, 407-415. [CrossRef]
  50. Tran, D.V.P.; Allawi, A.; Albayati, A.; Cao, T.N.; El-Zohairy, A.; Nguyen, Y.T.H. Recycled concrete aggregate for medium-quality structural concrete. Materials 2021, 14, 4612. [CrossRef] [PubMed]
  51. de Brito, J.M.C.L.; Gonçalves, A.P.; Santos, R. Recycled aggregates in concrete production-Multiple recycling of concrete coarse aggregates. Rev. Ing. Constr. 2006, 21, 33-40.
  52. Piccinali, A.; Diotti, A.; Plizzari, G.; Sorlini, S. Impact of Recycled Aggregate on the Mechanical and Environmental Properties of Concrete: A Review. J. Mater. 2022, 15, 1818. [CrossRef] [PubMed]
  53. Zheng, C.; Lou, C.; Du, G.; Li, X.; Liu, Z.; Li, L. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results Phys. 2018, 9, 1317-1322. [CrossRef]
  54. De Juan, M.S.; Gutiérrez, P.A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 2009, 23, 872-877. [CrossRef]
  55. Bai, G.; Zhu, C.; Liu, C.; Liu, B. An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Constr. Build. Mater. 2020, 240, 117978. [CrossRef]
  56. Poon, C.S.; Kou, S.C.; Lam, L. Use of recycled aggregates in molded concrete bricks and blocks. Constr. Build. Mater. 2002, 16, 281-289. [CrossRef]
  57. National Stone Sand & Gravel Association, NSSGA. Available online: https://www.nssga.org (accessed on 3 February 2023).
  58. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.