Academia.eduAcademia.edu

Outline

Duality and flat base change on formal schemes

1997, arXiv (Cornell University)

Abstract

C ontem p orary M athem atics D uality and F lat B ase C hange on Form alSchem es Leovi gi l do A l onso Tarr o,A na Jerem as,L opez and Joseph Li pm an A bstract. W e give several related versions of global G rothendieck D uality for unbounded com plexes on noetherian form alschem es. T he proofs,based on a non-trivial adaptation of D eligne's m ethod for the special case of ordinary schem es, are reasonably self-contained, m odulo the Special A djoint Functor T heorem. A n alternative approach, inspired by N eem an and based on recent results about \B row n R epresentability," is indicated as w ell. A section on applications and exam ples illustrates how our results synthesize a num ber of di erent duality-related topics (localduality,form alduality,residue theorem s, dualizing com plexes,...). A at-base-change theorem for pseudo-proper m aps leads in particular to shea ed versions ofduality forbounded-below com plexes w ith quasi-coherent hom ology. T hanks to G reenlees-M ay duality,the results take a specially nice form for proper m aps and bounded-below com plexes w ith coherent hom ology. C ontents 1. Prel i m i nari es and m ai n theorem s. 2. A ppl i cati ons and exam pl es. 3. D i rect l i m i ts ofcoherent sheaves on form alschem es. 4. G l obalG rothendi eck D ual i ty. 5. Torsi on sheaves. 6. D ual i ty for torsi on sheaves. 7. Fl at base change. 8. C onsequences ofthe at base change i som orphi sm. R eferences First tw o authors partially supported by X unta de G alicia research project X U G A 20701A 96 and Spain's D G E S grant P B 97-0530. T hey also thank the M athem atics D epartm ent of P urdue U niversity for its hospitality,help and support.. T hird author partially supported by the N ationalSecurity A gency.

References (26)

  1. N . B ourbaki, A l g ebre C om m utative, A ctualit es Sci. et Industrielles, no. 1293, H erm ann, Paris,1961.
  2. B N ] M . B okstedt and A . N eem an, H om otopy lim its in triangulated categories, C om positio M ath. 86 (1993),209{234.
  3. P. D eligne, C ohom ologie a supports propres, in T h eorie des topos et C ohom ol ogie E tal e des Sch em es (SG A 4) Tom e 3, Lecture N otes in M ath., no.305, Springer-V erlag, N ew Y ork,1973,pp.250{461.
  4. P.Freyd,A bel ian C ategories,H arper and R ow ,N ew Y ork,1964.
  5. J.Franke,B row n representability for triangulated categories,Topol ogy, to appear.
  6. E G A ] A .G rothendieck and J.D ieudonn e, E l em ents de G eom etrie A l g ebrique III, P ublications M ath.IH E S 11,Paris,1961.
  7. G D ] , E l em ents de G eom etrie A l g ebrique I,Springer-V erlag,N ew Y ork,1971.
  8. R . H artshorne, R esidues and D ual ity, Lecture N otes in M ath., no.20, Springer-V erlag, N ew Y ork,1966.
  9. O n the D e R ham cohom ology ofalgebraic varieties,P ubl ications M ath.IH E S 45 (1976),5{99.
  10. R . H ubl and E . K unz, Integration of di erential form s on schem es, J. R eine u. A ngew . M ath.410 (1990),53{83.
  11. R .H ubland P.Sastry,R egular di erentialform s and relative duality,A m erican J. M ath. 115 (1993),749{787.
  12. L.Illusie,E xistence de r esolutions globales,in T h eorie des Intersections et T h eor em e de R iem ann-R och (SG A 6), Lecture N otes in M ath., no.225, Springer-V erlag, N ew Y ork, 1971,pp.160-222.
  13. G . R . K em pf, Som e elem entary proofs of basic theorem s in the cohom ology of quasi- coherent sheaves,R ocky M ountain J. M ath.10 (1980),637{645.
  14. J.Lipm an,D ual izing sheaves,di erential s and residues on al gebraic varieties,A st erisque, vol.117,Soc.M ath.France,Paris,1984.
  15. R esidues and traces ofdi erential s form s via H ochschil d hom ol ogy,C ontem porary M athem atics,vol.61,A M S,P rovidence,1987.
  16. D esingularization of tw o-dim ensional schem es, A nnal s of M ath. 107 (1978), 151{207.
  17. N on-noetherian G rothendieck duality,this volum e.
  18. W .L utkebohm ert,O n com pacti cation ofschem es,M anuscripta M ath.80 (1993),95{111.
  19. S. M ac Lane, C ategories for the W orking M athem atician, Springer-V erlag, N ew Y ork, 1971. [M 2] ,H om ol ogy, Springer-V erlag,N ew Y ork,1975.
  20. A .N eem an,T he G rothendieck duality theorem via B ous eld's techniques and B row n rep- resentability,J. A m er. M ath. Soc.9 (1996),205{236.
  21. N 2] ,Triangul ated C ategories,preprint.
  22. N . Spaltenstein, R esolution of unbounded com plexes, C om positio M ath.65 (1988), 121{154.
  23. B .Stenstr om ,R ings ofQ uotients,G rundlehren der M ath.W iss.,bd.217,Springer-V erlag, N ew Y ork,1975.
  24. J. L. V erdier, B ase change for tw isted inverse im age of coherent sheaves, in A l gebraic G eom etry,O xford U niv.press,1969,pp.393{408.
  25. A . Y ekutieli, Sm ooth form al em beddings and the residue com plex, C anadian J. M ath. 50 (1998),863{896.
  26. U niversidade de Santiago de C om postela, Facultade de M atem aticas,E -15771 San- tiago de C om postela, SPA IN E -m ailaddress: lalonso@zmat.usc.es U R L:http://web.usc.es/~lalonso/ U niversidade de Santiago de C om postela, Facultade de M atem aticas,E -15771 San- tiago de C om postela, SPA IN E -m ailaddress: jeremias@zmat.usc.es