Abstract
AI
AI
This paper presents the implementation of hidden semi-Markov models (HsMM), highlighting the benefits of HsMM over traditional hidden Markov models (HMM) in handling general length distributions. It discusses the structure of HsMM, its applications, and addresses critical problems associated with HsMM implementation, providing code snippets for clarity.
References (20)
- Shun-Zheng Yu, 'Hidden semi-Markov models', Department of Electronics and Communication Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China, 2009
- Jan Bulla, 'Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series', Dissertation Presented for the Degree of Doctor of Philosophy at the Georg- August-University of G ottingen, 2006 http://mpra.ub.uni-muenchen.de/7675
- Ming Dong, David He, 'Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis', European Journal of Operational Research, 2006.
- Kevin P. Murphy, 'Hidden semi-Markov models (HSMMs)', 2002 www.ai.mit.edu/∼murphyk
- Mou-Yen Chen, Amlan Kundu, Sargur N. Srihari, 'Variable Duration Hidden MarkovModel and Morphological Segmentation for Handwritten Word Recognition', IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER , 1995 ieeexplore.ieee.org/iel2/916/7982/00341066.pdf
- ChengXiang Zhai, 'A Brief Note on the Hidden Markov Models (HMMs)', Department of Computer Science University of Illinois at Urbana-Champaign, 2003 http://sifaka.cs.uiuc.edu/course/498cxz05f/hmm.pdf
- Lawrence R. Rabiner, 'A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition', Pages: 257-286, Proceedings of the IEEE, 1989 http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
- Barbara Resch, 'Hidden Markov Models,A Tutorial for the Course Computational Intelligence', Signal Processing and Speech Communication Laboratory, Institute for Theoretical Computer Science, Institute for Theoretical Computer Science, 2009 http://www.igi.tugraz.at/lehre/CI
- Robin, 'BAUM WELCH ALGORITHM',NATURAL LANGUAGE PROCESSING ARTICLES ON NATURAL LANGUGE PROCESSING, 2009 http://language.worldofcomputing.net/pos-tagging/baum-welch- algorithm.html#
- Rose Hoberman, Dannie Durand, 'HMM Lecture Notes', Computational Genomics and Molecular Biology, Carnegie Mellon University, 2006 http://www.cs.cmu.edu/~durand/03-711/2006/Lectures/hmm- bw.pdf
- Matthew J. Johnson, Alan S. Willsky, 'The Hierarchical Dirichlet Process Hidden Semi-Markov Model', 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010), Avalon, California, 2010 http://www.mit.edu/~mattjj/uai2010
- ChengXiang Zhai, 'Assignment #5: Hidden Markov Models for Information Extraction', Department of Computer Science University of Illinois at Urbana -Champaign, 2003 http://sifaka.cs.uiuc.edu/course/498cxz04f/as sign5.ht ml 13. Shun-Zheng, YuHisashi Kobayashi, 'An Efficient
- Forward-Backward Algorithm for an Explicit-Duration Hidden Markov Model', Pages: 11-14, IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 1, 2003. http://sist.sysu.edu.cn/~syu/Publications/IEEE_SPL03.pdf
- Clayton Scott, Robert Nowak, 'Maximum Likelihood Estimation', 2004 http://cnx.org/content/m11446/latest/
- Jae Myung, 'Tutorial on maximum likelihood estimation', Journal of Mathematical Psychology, 2002 citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.671
- Kazem Taghva, Jeffrey Coombs, Ray Pereda, Thomas Nartker, 'Address Extraction Using Hidden Markov Models', Information Science Research Institute University of Nevada, Las Vegas, 2005 http://cat.inist.fr/?aModele=afficheN&cpsidt=17027918
- Joseph Picone, 'LECTURE 33: SMOOTHING N-GRAM LANGUAGE MODELS', Insititute of Signal and Image Processing, Temple University, 2009 http://www.isip.piconepress.com/publications/courses/msstate/e ce_8463/lectures.
- Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, 'Introduction to Information Retrieval' Cambridge University Pres, 2008 http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
- Mengqiu Wang, 'A Presentation on Smoothing', 2010 http://www.stanford.edu/class/cs224n/.../cs224n-section1- smoothing-040910.ppt
- Mohammed Waleed Kadous, 'Auslan Sign Recognition' PhD dissertation, School of Computer Science and Engineering, University of New South Wales, 1998 http://www.cse.unsw.edu.au/~waleed/phd/html/node35.html