Riesz Wavelets, Tiling and Spectral Sets in LCA Groups
2017, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1703.06771Abstract
This paper is devoted to the study of geometry properties of wavelet and Riesz wavelet sets on locally compact abelian groups. The catalyst for our research is a result by Wang ([32], Theorem 1.1) in the Euclidean wavelet theory. Here, we extend the result to wavelet and Riesz wavelet collection of sets in infinite locally compact abelian groups.
References (32)
- E. Agoraa, J. Antezanaa, C. Cabrelli, Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Advances in Mathematics, Volume 285, 5 November 2015, Pages 454-477 [5, 14]
- L. W. Baggett, H.A. Medina, K. D. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in R n , J. Fourier Anal. Appl. 5 (1999), no. 6, 563-573. [2]
- D. Barbieri, E. Hernandez, A. Mayeli, Tiling by lattices for locally compact abelian groups, to appear in Comptes rendus Mathematique. DOI information: 10.1016/j.crma.2016.11.017 [3]
- J. J. Benedetto, R. L. Benedetto, The construction of wavelet sets, Wavelets and Multiscale Analysis: Theory and Applications. Applied and Numerical Harmonic Analysis pp 17-56, 2011. [2, 5, 15]
- J. J. Benedetto and M. T. Leon, The construction of multiple dyadic minimally supported frequency wavelets on R d , AMS Contemporary Math., 247, (1999). [4]
- M. Bownik, Riesz wavelets and generalized multiresolution analysis, Appl. Comput. Harmon. Anal. 14 (2003) 181-194. [4]
- M. Bownik, K. Ross, The Structure of Translation-Invariant Spaces on Locally Com- pact Abelian Groups, Journal of Fourier Analysis and Applications (2015), Volume 21, Issue 4, pp 849-884 [9]
- O. Christensen, Frames and Bases, An introductory course, Birkhäuser, Boston, 2008. [10, 11]
- B. Currey, A. Mayeli, Gabor fields and wavelet sets for the Heisenberg group; Monatsh. Math. (2011), 162:119-142. [4]
- X. Dai, D. R. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134, no. 640 (1998). [2]
- X. Dai, D. R. Larson, D. M. Speegle, Wavelet sets in R n , J. Fourier Anal. Appl., Volume 3, Number 4, 1997 [2]
- M. Dobrescu, G. Ólafsson, Wavelet sets without groups, arXiv:0710.3508, preprint. [2, 9]
- X. Fang and X.-H. Wang, Construction of minimally supported frequency wavelets, J. Fourier Anal. Appl. 2 (1996), 315-327. [2]
- H. Führ, Y. Maus, Wavelet Riesz bases associated to nonisotropic dilations, preprint. Arxiv: 1510.01832 [4]
- B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121. [3, 5]
- B. Han, R-Q. J, Characterization of Riesz bases of wavelets generated from multires- olution analysis, Appl. Comput. Harmon. Anal. 23 (2007) 321-345. [4]
- E. Hernandez, X.-H. Wang and G. Weiss, Smoothing minimally supported frequency wavelets. I, J. Fourier. Anal. Appl. 2 (1996), 329-340. [2]
- E. Hernandez, X.-H. Wang and G. Weiss, Smoothing minimally supported frequency wavelets. II, J. Fourier. Anal. Appl. 3 (1997), 23-41. [2]
- E. Hewitt, K. A. Ross, Abstract harmonic analysis. Vol. I. Structure of topological groups, integration theory, group representations. Second edition. Springer-Verlag, Berlin-New York, 1979. [9, 16]
- A. Iosevich, N. Katz and T. Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10 (2003), no. 5-6, 559-569. [3]
- A. Iosevich, C.K. Lai, A. Mayeli, Tight wavelet frame sets on finite vector spaces, submitted. [4]
- A. Iosevich, A. Mayeli and J. Pakianathan, The Fuglede Conjecture holds in Z p × Z p , to appear in Analysis and PDE. [3]
- M. N. Kolountzakis, The study of translational tiling with Fourier Analysis, Lectures given at the Workshop on Fourier Analysis and Convexity, Universita di Milano- Bicocca, June 11-22, (2001) [4]
- M. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519-528. [3]
- M. N. Kolountzakis, Multiple lattice tiles and Riesz bases of exponentials, Proc. Amer. Math. Soc. 143 (2015), no. 2, 741-747. [4]
- I. Laba, Fuglede's conjecture for a union of two intervals, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2965-2972. [3]
- I. Laba, The spectral set conjecture and multiplicative properties of roots of polyno- mials, J. London Math. Soc. (2) 65 (2002), no. 3, 661-671. [3]
- Y. Lyubarskii and A. Rashkovskii, Complete interpolation sequences for Fourier transforms supported by convex symmetric polygons, Ark. Mat. 38 (2000), no. 1, 139-170. [16]
- L.S. Pontryagin, Topological Groups, Princeton Univ. Press (1946) (Translated from Russian) [8]
- W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, John Wiley and Sons, New York-London, 1962. [7, 8]
- T. Tao, Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251-258. [3]
- Y. Wang, Wavelets, tiling, and spectral sets, Duke Math. J. 114 (2002), 43-57. [1, 2, 3, 6]