Academia.eduAcademia.edu

Outline

Riesz Wavelets, Tiling and Spectral Sets in LCA Groups

2017, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1703.06771

Abstract

This paper is devoted to the study of geometry properties of wavelet and Riesz wavelet sets on locally compact abelian groups. The catalyst for our research is a result by Wang ([32], Theorem 1.1) in the Euclidean wavelet theory. Here, we extend the result to wavelet and Riesz wavelet collection of sets in infinite locally compact abelian groups.

References (32)

  1. E. Agoraa, J. Antezanaa, C. Cabrelli, Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Advances in Mathematics, Volume 285, 5 November 2015, Pages 454-477 [5, 14]
  2. L. W. Baggett, H.A. Medina, K. D. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in R n , J. Fourier Anal. Appl. 5 (1999), no. 6, 563-573. [2]
  3. D. Barbieri, E. Hernandez, A. Mayeli, Tiling by lattices for locally compact abelian groups, to appear in Comptes rendus Mathematique. DOI information: 10.1016/j.crma.2016.11.017 [3]
  4. J. J. Benedetto, R. L. Benedetto, The construction of wavelet sets, Wavelets and Multiscale Analysis: Theory and Applications. Applied and Numerical Harmonic Analysis pp 17-56, 2011. [2, 5, 15]
  5. J. J. Benedetto and M. T. Leon, The construction of multiple dyadic minimally supported frequency wavelets on R d , AMS Contemporary Math., 247, (1999). [4]
  6. M. Bownik, Riesz wavelets and generalized multiresolution analysis, Appl. Comput. Harmon. Anal. 14 (2003) 181-194. [4]
  7. M. Bownik, K. Ross, The Structure of Translation-Invariant Spaces on Locally Com- pact Abelian Groups, Journal of Fourier Analysis and Applications (2015), Volume 21, Issue 4, pp 849-884 [9]
  8. O. Christensen, Frames and Bases, An introductory course, Birkhäuser, Boston, 2008. [10, 11]
  9. B. Currey, A. Mayeli, Gabor fields and wavelet sets for the Heisenberg group; Monatsh. Math. (2011), 162:119-142. [4]
  10. X. Dai, D. R. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134, no. 640 (1998). [2]
  11. X. Dai, D. R. Larson, D. M. Speegle, Wavelet sets in R n , J. Fourier Anal. Appl., Volume 3, Number 4, 1997 [2]
  12. M. Dobrescu, G. Ólafsson, Wavelet sets without groups, arXiv:0710.3508, preprint. [2, 9]
  13. X. Fang and X.-H. Wang, Construction of minimally supported frequency wavelets, J. Fourier Anal. Appl. 2 (1996), 315-327. [2]
  14. H. Führ, Y. Maus, Wavelet Riesz bases associated to nonisotropic dilations, preprint. Arxiv: 1510.01832 [4]
  15. B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121. [3, 5]
  16. B. Han, R-Q. J, Characterization of Riesz bases of wavelets generated from multires- olution analysis, Appl. Comput. Harmon. Anal. 23 (2007) 321-345. [4]
  17. E. Hernandez, X.-H. Wang and G. Weiss, Smoothing minimally supported frequency wavelets. I, J. Fourier. Anal. Appl. 2 (1996), 329-340. [2]
  18. E. Hernandez, X.-H. Wang and G. Weiss, Smoothing minimally supported frequency wavelets. II, J. Fourier. Anal. Appl. 3 (1997), 23-41. [2]
  19. E. Hewitt, K. A. Ross, Abstract harmonic analysis. Vol. I. Structure of topological groups, integration theory, group representations. Second edition. Springer-Verlag, Berlin-New York, 1979. [9, 16]
  20. A. Iosevich, N. Katz and T. Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10 (2003), no. 5-6, 559-569. [3]
  21. A. Iosevich, C.K. Lai, A. Mayeli, Tight wavelet frame sets on finite vector spaces, submitted. [4]
  22. A. Iosevich, A. Mayeli and J. Pakianathan, The Fuglede Conjecture holds in Z p × Z p , to appear in Analysis and PDE. [3]
  23. M. N. Kolountzakis, The study of translational tiling with Fourier Analysis, Lectures given at the Workshop on Fourier Analysis and Convexity, Universita di Milano- Bicocca, June 11-22, (2001) [4]
  24. M. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519-528. [3]
  25. M. N. Kolountzakis, Multiple lattice tiles and Riesz bases of exponentials, Proc. Amer. Math. Soc. 143 (2015), no. 2, 741-747. [4]
  26. I. Laba, Fuglede's conjecture for a union of two intervals, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2965-2972. [3]
  27. I. Laba, The spectral set conjecture and multiplicative properties of roots of polyno- mials, J. London Math. Soc. (2) 65 (2002), no. 3, 661-671. [3]
  28. Y. Lyubarskii and A. Rashkovskii, Complete interpolation sequences for Fourier transforms supported by convex symmetric polygons, Ark. Mat. 38 (2000), no. 1, 139-170. [16]
  29. L.S. Pontryagin, Topological Groups, Princeton Univ. Press (1946) (Translated from Russian) [8]
  30. W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, John Wiley and Sons, New York-London, 1962. [7, 8]
  31. T. Tao, Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251-258. [3]
  32. Y. Wang, Wavelets, tiling, and spectral sets, Duke Math. J. 114 (2002), 43-57. [1, 2, 3, 6]