Academia.eduAcademia.edu

Outline

Towards plasma-like collisionless trajectories in the brain

2018, Neuroscience Letters

https://doi.org/10.1016/J.NEULET.2017.10.016

Abstract
sparkles

AI

This research presents a novel model for brain dynamics inspired by plasma physics, emphasizing the collective behavior and long-range couplings of charged particles, termed 'plasma-like' for the brain. Utilizing McKean-Vlasov equations, the model explains cortical phase transitions and coherence in brain activity, suggesting that collisionless movements may play a role in neural network dynamics. This approach opens a pathway for understanding the brain's operational principles, particularly at the edge of chaos, while acknowledging the unique characteristics of brain systems compared to true plasma.

References (29)

  1. Afraimovich V, Tristan I, Varona P, Rabinovich M. 2013.Transient Dynamics in Complex Systems: Heteroclinic Sequences with Multidimensional Unstable Manifolds. Discontinuity, Nonlinearity and Complexity2, 21-41.
  2. Alexander DM, Nikolaev AR, Jurica P, van Leeuwen C. 2016. Global Neuromagnetic Cortical Fields Have Non-Zero Velocity. PLOS ONE 11(3):E0148413. DOI: 10.1371/journal.pone.0148413
  3. Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási AL. 2004.Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839-843, doi:10.1038/nature02289.
  4. Andrews-Hanna JR,Smallwood J, Spreng RN. 2014. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29-52.
  5. Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett.59,381-384.
  6. Bellomo N, Degond P, Tadmor E (Eds.). 2017. Active Particles, Volume 1 Advances in Theory, Models, and Applications. Springer.
  7. Bernardinelli Y, Muller D, Nikonenko I. 2014. Astrocyte synapse structural plasticity. Neural Plast. 2014, 232105.
  8. Buzsáki G, Anastassiou CA, Koch C. 2012. The origin of extracellular fields and currents -EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience 13, 407-420.doi:10.1038/nrn3241.
  9. Chayes L, Panferov V. 2010. The McKean-Vlasov Equation in Finite Volume. J Stat Phys 138: 351- 380. DOI 10.1007/s10955-009-9913-z.
  10. Cheng Y, Gamba IM. 2012. Numerical study of one- dimensional Vlasov-Poisson equations for infinite homogeneous stellar systems. Commun Nonlinear SciNumerSimulat 17 (2012) 2052-2061
  11. Dawson D, Vaillancourt J. 1995. Stochastic
  12. McKean-Vlasov equations. Nonlinear Differential Equations and Applications NoDEA, Volume 2, Issue 2, pp 199-229.
  13. deArcangelis L, Herrmann HJ. 2010. Learning as a phenomenon occurring in a critical state. Proc. Nat. Acad. Sci. USA 107, 3977-3981.doi: 10.1073/pnas.0912289107.
  14. deBuyl P, Mukamel D Ruffo S. 2011. Statistical mechanics of collisionless relaxation in a non- interacting system. Phil. Trans. R. Soc. A 2011 369, 439-452. doi: 10.1098/rsta.2010.0251
  15. Deco G, Jirsa VK. 2012. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci32,3366-75. doi: 10.1523/JNEUROSCI.2523-11.2012.
  16. Delarue F, Inglis J, Rubenthaler S, Tanré E. 2015. Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. Ann. Appl. Probab. Volume 25, Number 4 (2015), 2096-2133.
  17. Friston, K. 2010. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127-138.
  18. Galtier MN, Touboul J. 2013 Macroscopic equations governing noisy spiking neuronal populations with linear synapses. PLoS One. 13;8(11):e78917. doi: 10.1371/journal.pone.0078917. eCollection 2013.
  19. Gates DJ, Penrose O. 1970. The van der Waals limit for classical systems. III. Deviation from the van der Waals-Maxwell theory. Comm. Math. Phys. Volume 17, Number 3 (1970), 194-209.
  20. Goldston RJ, Rutherford PH. 1995. Introduction to Plasma Physics. CRC Press, Plasma Physics Series.
  21. Gollo LL, Roberts JA, Cocchi L. 2017. Mapping how local perturbations influence systems-level brain dynamics. Neuroimage, pii: S1053-8119(17)30066-6. doi: 10.1016/j.neuroimage.2017.01.057.
  22. Haider B, Duque A, Hasenstaub AR, McCormick DA. 2006. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535-4545.
  23. Inglis J, Talay D. 2015. Mean-Field Limit of a Stochastic Particle System Smoothly Interacting Through Threshold Hitting-Times and Applications to Neural Networks with Dendritic Component. SIAM J. Math. Anal., 47(5), 3884-3916. (33 pages)
  24. Kotelenez PM, Kurtz TG. 2010 Macroscopic limits for stochastic partial differential equations of McKean-Vlasov type. Probab. Theory Relat. Fields (2010) 146:189-222. DOI 10.1007/s00440-008- 0188-0
  25. Lombardi F, Herrmann HJ, Perrone-Capano C, Plenz D, de Arcangelis L. 2012 Balance between Excitation and Inhibition Controls the Temporal Organization of Neuronal Avalanches. 108, 228703.
  26. Li JM, Bentley WJ, Snyder LH. 2015. Functional connectivity arises from a slow rhythmic mechanism. ProcNatlAcadSci U S A. 12;112(19):E2527-35. doi: 10.1073/pnas.1419837112.
  27. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ. 2001. Long-range temporal correlations and scaling behavior in human brain oscillations. Journal of Neuroscience, 21(4), 1370- 1377.
  28. Mitra A, Snyder AZ, Blazey T, Raichle ME. 2015. Lag threads organize the brain's intrinsic activity. Proc Natl Acad Sci U S A. 112(17):E2235-44. doi: 10.1073/pnas.1503960112. Epub 2015 Mar 30.
  29. Xue M, Atallah BV, Scanziani M. 2014. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596-600. doi: 10.1038/nature13321.