Towards plasma-like collisionless trajectories in the brain
2018, Neuroscience Letters
https://doi.org/10.1016/J.NEULET.2017.10.016Abstract
AI
AI
This research presents a novel model for brain dynamics inspired by plasma physics, emphasizing the collective behavior and long-range couplings of charged particles, termed 'plasma-like' for the brain. Utilizing McKean-Vlasov equations, the model explains cortical phase transitions and coherence in brain activity, suggesting that collisionless movements may play a role in neural network dynamics. This approach opens a pathway for understanding the brain's operational principles, particularly at the edge of chaos, while acknowledging the unique characteristics of brain systems compared to true plasma.
References (29)
- Afraimovich V, Tristan I, Varona P, Rabinovich M. 2013.Transient Dynamics in Complex Systems: Heteroclinic Sequences with Multidimensional Unstable Manifolds. Discontinuity, Nonlinearity and Complexity2, 21-41.
- Alexander DM, Nikolaev AR, Jurica P, van Leeuwen C. 2016. Global Neuromagnetic Cortical Fields Have Non-Zero Velocity. PLOS ONE 11(3):E0148413. DOI: 10.1371/journal.pone.0148413
- Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási AL. 2004.Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839-843, doi:10.1038/nature02289.
- Andrews-Hanna JR,Smallwood J, Spreng RN. 2014. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29-52.
- Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett.59,381-384.
- Bellomo N, Degond P, Tadmor E (Eds.). 2017. Active Particles, Volume 1 Advances in Theory, Models, and Applications. Springer.
- Bernardinelli Y, Muller D, Nikonenko I. 2014. Astrocyte synapse structural plasticity. Neural Plast. 2014, 232105.
- Buzsáki G, Anastassiou CA, Koch C. 2012. The origin of extracellular fields and currents -EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience 13, 407-420.doi:10.1038/nrn3241.
- Chayes L, Panferov V. 2010. The McKean-Vlasov Equation in Finite Volume. J Stat Phys 138: 351- 380. DOI 10.1007/s10955-009-9913-z.
- Cheng Y, Gamba IM. 2012. Numerical study of one- dimensional Vlasov-Poisson equations for infinite homogeneous stellar systems. Commun Nonlinear SciNumerSimulat 17 (2012) 2052-2061
- Dawson D, Vaillancourt J. 1995. Stochastic
- McKean-Vlasov equations. Nonlinear Differential Equations and Applications NoDEA, Volume 2, Issue 2, pp 199-229.
- deArcangelis L, Herrmann HJ. 2010. Learning as a phenomenon occurring in a critical state. Proc. Nat. Acad. Sci. USA 107, 3977-3981.doi: 10.1073/pnas.0912289107.
- deBuyl P, Mukamel D Ruffo S. 2011. Statistical mechanics of collisionless relaxation in a non- interacting system. Phil. Trans. R. Soc. A 2011 369, 439-452. doi: 10.1098/rsta.2010.0251
- Deco G, Jirsa VK. 2012. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci32,3366-75. doi: 10.1523/JNEUROSCI.2523-11.2012.
- Delarue F, Inglis J, Rubenthaler S, Tanré E. 2015. Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. Ann. Appl. Probab. Volume 25, Number 4 (2015), 2096-2133.
- Friston, K. 2010. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127-138.
- Galtier MN, Touboul J. 2013 Macroscopic equations governing noisy spiking neuronal populations with linear synapses. PLoS One. 13;8(11):e78917. doi: 10.1371/journal.pone.0078917. eCollection 2013.
- Gates DJ, Penrose O. 1970. The van der Waals limit for classical systems. III. Deviation from the van der Waals-Maxwell theory. Comm. Math. Phys. Volume 17, Number 3 (1970), 194-209.
- Goldston RJ, Rutherford PH. 1995. Introduction to Plasma Physics. CRC Press, Plasma Physics Series.
- Gollo LL, Roberts JA, Cocchi L. 2017. Mapping how local perturbations influence systems-level brain dynamics. Neuroimage, pii: S1053-8119(17)30066-6. doi: 10.1016/j.neuroimage.2017.01.057.
- Haider B, Duque A, Hasenstaub AR, McCormick DA. 2006. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535-4545.
- Inglis J, Talay D. 2015. Mean-Field Limit of a Stochastic Particle System Smoothly Interacting Through Threshold Hitting-Times and Applications to Neural Networks with Dendritic Component. SIAM J. Math. Anal., 47(5), 3884-3916. (33 pages)
- Kotelenez PM, Kurtz TG. 2010 Macroscopic limits for stochastic partial differential equations of McKean-Vlasov type. Probab. Theory Relat. Fields (2010) 146:189-222. DOI 10.1007/s00440-008- 0188-0
- Lombardi F, Herrmann HJ, Perrone-Capano C, Plenz D, de Arcangelis L. 2012 Balance between Excitation and Inhibition Controls the Temporal Organization of Neuronal Avalanches. 108, 228703.
- Li JM, Bentley WJ, Snyder LH. 2015. Functional connectivity arises from a slow rhythmic mechanism. ProcNatlAcadSci U S A. 12;112(19):E2527-35. doi: 10.1073/pnas.1419837112.
- Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ. 2001. Long-range temporal correlations and scaling behavior in human brain oscillations. Journal of Neuroscience, 21(4), 1370- 1377.
- Mitra A, Snyder AZ, Blazey T, Raichle ME. 2015. Lag threads organize the brain's intrinsic activity. Proc Natl Acad Sci U S A. 112(17):E2235-44. doi: 10.1073/pnas.1503960112. Epub 2015 Mar 30.
- Xue M, Atallah BV, Scanziani M. 2014. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596-600. doi: 10.1038/nature13321.