Academia.eduAcademia.edu

Outline

Scale separation for implicit large eddy simulation

2011, Journal of Computational Physics

Abstract

With implicit large-eddy simulation (ILES) the truncation error of the discretization scheme acts as subgrid-scale (SGS) model for the computation of turbulent flows. Although ILES is comparably simple, numerical robust and easy to implement, a considerable challenge is the design of numerical discretization schemes resulting in a physically consistent SGS model. In this work, we consider the implicit SGS model of the adaptive central-upwind weighted-essentiallynon-oscillatory scheme (WENO-CU6) (Hu, XY, Wang, Q. & Adams, NA, J. Comput. Phys., 229 (2010) 8952-8965.) by incorporating a physically-motivated scale-separation formulation. Scale separation is accomplished by a simple modification of the WENO weights. The resulting modified scheme maintains the shock-capturing capabilities of the original WENO-CU6 scheme while it is also able to reproduce the Kolmogorov range of the kinetic-energy spectrum for turbulence at the limit of infinite Reynolds number independently of grid resolution. For quasi-isentropic compressible turbulence the the pseudo-sound regime of the dilatational kinetic-energy spectrum and the non-Gaussian probabilitydensity function of the longitudinal velocity derivative are reproduced.

Key takeaways
sparkles

AI

  1. The proposed WENO-CU6 scheme enhances implicit large-eddy simulation (ILES) with a modified scale-separation approach.
  2. Scale separation differentiates contributions from resolved and non-resolved turbulence scales using WENO weights.
  3. Numerical tests demonstrate the scheme's ability to reproduce Kolmogorov-range energy spectra at infinite Reynolds numbers.
  4. The scheme maintains shock-capturing capabilities while ensuring physical consistency for turbulent flows.
  5. Key parameters include Cq set to 1000 and q set to 4 for effective scale separation.

References (21)

  1. NA Adams, S. Hickel, and S. Franz, 2004, "Implicit subgrid-scale modeling by adaptive deconvolution", J. Com- put. Phys., Vol. 200, pp. 412-431.
  2. N.A. Adams and Shariff K, 1996 "A high-resolution hy- brid compact-ENO scheme for shock-turbulence interaction problems", J. Comput. Phys., Vol. 127, pp. 27-51.
  3. D.S. Balsara and C.W. Shu, 2000, "Monotonicity pre- serving weighted essentially non-oscillatory schemes with in- creasingly high order of accuracy", J. Comput. Phys., Vol. 160, pp. 405-452.
  4. J.P. Boris, F.F. Grinstein, E.S. Oran, and R.L. Kolbe, 1992, "New insights into large eddy simulation", Fluid dy- namics research, Vol. 10, pp. 199-228.
  5. P. Colella and P.R. Woodward, 1984, "The Piecewise Parabolic Method (PPM) for gas-dynamical simulations", J. Comput. Phys., Vol. 54, pp. 174-201.
  6. A.W. Cook, 2007, "Artificial fluid properties for large- eddy simulation of compressible turbulent mixing", Physics of Fluids, Vol. 19, 055103.
  7. E. Garnier, N.A. Adams, and P. Sagaut, 2009, "Large Eddy Simulation for Compressible Flows", Springer. E. Garnier, M. Mossi, P. Sagaut, P. Comte, and M. Dev- ille, 1999, "On the use of shock-capturing schemes for large- eddy simulation", J. Comput. Phys., Vol. 153, pp. 273-311.
  8. F.F. Grinstein and C. Fureby, 2006, "Recent progress on flux-limiting based implicit Large Eddy Simulation," Proceed- ings, European Conference on Computational Fluid Dynam- ics, ECCOMAS CFD.
  9. F.F. Grinstein, L.G. Margolin, and W. Rider, 2007, "Im- plicit large eddy simulation: computing turbulent fluid dy- namics", Cambridge Univ Pr. S. Hickel and N.A. Adams, 2007, "On implicit subgrid- scale modeling in wall-bounded flows", Phys. Fluids, Vol. 19, 105106. S. Hickel, N.A. Adams, and J.A. Domaradzki, 2006 "An adaptive local deconvolution method for implicit LES", J. Comput. Phys., Vol. 213, pp. 413-436. XY Hu, Q. Wang, and NA Adams, 2010, An adaptive central-upwind weighted essentially non-oscillatory scheme", J. Comput. Phys., Vol. 229, pp. 8952-8965.
  10. G.S. Jiang and C.W. Shu, 1996, "Efficient implementa- tion of weighted ENO schemes", J. Comput. Phys, Vol. 126, pp. 202-228.
  11. E. Johnsen, J. Larsson, A.V. Bhagatwala, W.H. Cabot, P. Moin, B.J. Olson, P.S. Rawat, S.K. Shankar, B. Sjögreen, HC Yee, et al, 2010, "Assessment of high-resolution meth- ods for numerical simulations of compressible turbulence with shock waves", J. Comput. Phys., Vol. 229, pp. 1213-1237.
  12. H.S. Kang, S. Chester, and C. Meneveau, 2003, "Decay- ing turbulence in an active-grid-generated flow and compar- isons with large-eddy simulation", Journal of Fluid Mechan- ics, Vol. 480, 129-160.
  13. S. Kawai, S.K. Shankar, and S.K. Lele, 2010, "As- sessment of localized artificial diffusivity scheme for large- eddy simulation of compressible turbulent flows", J. Comput. Phys., Vol. 229, pp. 1739-1762.
  14. K.H. Kim and C. Kim, 2005, "Accurate, efficient and monotonic numerical methods for multi-dimensional com- pressible flows:: Part II: Multi-dimensional limiting process", Journal of computational physics, Vol. 208, pp. 570-615.
  15. M. Lesieur and S. Ossia, 2000 "3D isotropic turbulence at very high Reynolds numbers: EDQNM study", Journal of Turbulence, Vol. 1, pp. 1-25.
  16. M. Meyer, S. Hickel, and N.A. Adams, 2010, "'Assess- ment of Implicit Large-Eddy Simulation with a Conservative Immersed Interface Method for turbulent cylinder flow", Int. J. Heat Fluid Flow, Vol. 31, pp. 368-377.
  17. P. Sagaut, 2006, "'Large eddy simulation for incompress- ible flows: an introduction", Springer Verlag. P. Sagaut and C. Cambon, 2008, "'Homogeneous turbu- lence dynamics", Cambridge University Press.
  18. R. Samtaney, DI Pullin, and B. Kosović, 2001, "Direct numerical simulation of decaying compressible turbulence and shocklet statistics", Physics of Fluids, Vol. 13, 1415. C.W. Shu and S. Osher, 1989, "Efficient implementa- tion of essentially non-oscillatory shock-capturing schemes", J. Comput. Phys., Vol. 83, pp. 32-78.
  19. L. Skrbek and S.R. Stalp, 2000, "On the decay of ho- mogeneous isotropic turbulence", Physics of fluids, Vol. 12, 1997. I.V. Sytine, D.H. Porter, P.R. Woodward, S.W. Hodson, and K.H. Winkler, 2000, "Convergence tests for the piecewise parabolic method and Navier-Stokes solutions for homoge- neous compressible turbulence", J. Comput. Phys., Vol. 158, pp. 225-238.
  20. B. Thornber, A. Mosedale, and D. Drikakis, 2007, "On the implicit large eddy simulations of homogeneous decaying turbulence", J. Comput. Phys., Vol. 226, pp. 1902-1929. B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, and RJR Williams, 2008, "An improved reconstruction method for compressible flows with low Mach number features", J. Com- put. Phys., Vol. 227, pp. 4873-4894.
  21. V. Yakhot and K.R. Sreenivasan, 2005, "Anomalous scaling of structure functions and dynamic constraints on tur- bulence simulations", Journal of Statistical Physics, Vol. 121, pp. 823-841.