Scale separation for implicit large eddy simulation
2011, Journal of Computational Physics
Abstract
With implicit large-eddy simulation (ILES) the truncation error of the discretization scheme acts as subgrid-scale (SGS) model for the computation of turbulent flows. Although ILES is comparably simple, numerical robust and easy to implement, a considerable challenge is the design of numerical discretization schemes resulting in a physically consistent SGS model. In this work, we consider the implicit SGS model of the adaptive central-upwind weighted-essentiallynon-oscillatory scheme (WENO-CU6) (Hu, XY, Wang, Q. & Adams, NA, J. Comput. Phys., 229 (2010) 8952-8965.) by incorporating a physically-motivated scale-separation formulation. Scale separation is accomplished by a simple modification of the WENO weights. The resulting modified scheme maintains the shock-capturing capabilities of the original WENO-CU6 scheme while it is also able to reproduce the Kolmogorov range of the kinetic-energy spectrum for turbulence at the limit of infinite Reynolds number independently of grid resolution. For quasi-isentropic compressible turbulence the the pseudo-sound regime of the dilatational kinetic-energy spectrum and the non-Gaussian probabilitydensity function of the longitudinal velocity derivative are reproduced.
Key takeaways
AI
AI
- The proposed WENO-CU6 scheme enhances implicit large-eddy simulation (ILES) with a modified scale-separation approach.
- Scale separation differentiates contributions from resolved and non-resolved turbulence scales using WENO weights.
- Numerical tests demonstrate the scheme's ability to reproduce Kolmogorov-range energy spectra at infinite Reynolds numbers.
- The scheme maintains shock-capturing capabilities while ensuring physical consistency for turbulent flows.
- Key parameters include Cq set to 1000 and q set to 4 for effective scale separation.
References (21)
- NA Adams, S. Hickel, and S. Franz, 2004, "Implicit subgrid-scale modeling by adaptive deconvolution", J. Com- put. Phys., Vol. 200, pp. 412-431.
- N.A. Adams and Shariff K, 1996 "A high-resolution hy- brid compact-ENO scheme for shock-turbulence interaction problems", J. Comput. Phys., Vol. 127, pp. 27-51.
- D.S. Balsara and C.W. Shu, 2000, "Monotonicity pre- serving weighted essentially non-oscillatory schemes with in- creasingly high order of accuracy", J. Comput. Phys., Vol. 160, pp. 405-452.
- J.P. Boris, F.F. Grinstein, E.S. Oran, and R.L. Kolbe, 1992, "New insights into large eddy simulation", Fluid dy- namics research, Vol. 10, pp. 199-228.
- P. Colella and P.R. Woodward, 1984, "The Piecewise Parabolic Method (PPM) for gas-dynamical simulations", J. Comput. Phys., Vol. 54, pp. 174-201.
- A.W. Cook, 2007, "Artificial fluid properties for large- eddy simulation of compressible turbulent mixing", Physics of Fluids, Vol. 19, 055103.
- E. Garnier, N.A. Adams, and P. Sagaut, 2009, "Large Eddy Simulation for Compressible Flows", Springer. E. Garnier, M. Mossi, P. Sagaut, P. Comte, and M. Dev- ille, 1999, "On the use of shock-capturing schemes for large- eddy simulation", J. Comput. Phys., Vol. 153, pp. 273-311.
- F.F. Grinstein and C. Fureby, 2006, "Recent progress on flux-limiting based implicit Large Eddy Simulation," Proceed- ings, European Conference on Computational Fluid Dynam- ics, ECCOMAS CFD.
- F.F. Grinstein, L.G. Margolin, and W. Rider, 2007, "Im- plicit large eddy simulation: computing turbulent fluid dy- namics", Cambridge Univ Pr. S. Hickel and N.A. Adams, 2007, "On implicit subgrid- scale modeling in wall-bounded flows", Phys. Fluids, Vol. 19, 105106. S. Hickel, N.A. Adams, and J.A. Domaradzki, 2006 "An adaptive local deconvolution method for implicit LES", J. Comput. Phys., Vol. 213, pp. 413-436. XY Hu, Q. Wang, and NA Adams, 2010, An adaptive central-upwind weighted essentially non-oscillatory scheme", J. Comput. Phys., Vol. 229, pp. 8952-8965.
- G.S. Jiang and C.W. Shu, 1996, "Efficient implementa- tion of weighted ENO schemes", J. Comput. Phys, Vol. 126, pp. 202-228.
- E. Johnsen, J. Larsson, A.V. Bhagatwala, W.H. Cabot, P. Moin, B.J. Olson, P.S. Rawat, S.K. Shankar, B. Sjögreen, HC Yee, et al, 2010, "Assessment of high-resolution meth- ods for numerical simulations of compressible turbulence with shock waves", J. Comput. Phys., Vol. 229, pp. 1213-1237.
- H.S. Kang, S. Chester, and C. Meneveau, 2003, "Decay- ing turbulence in an active-grid-generated flow and compar- isons with large-eddy simulation", Journal of Fluid Mechan- ics, Vol. 480, 129-160.
- S. Kawai, S.K. Shankar, and S.K. Lele, 2010, "As- sessment of localized artificial diffusivity scheme for large- eddy simulation of compressible turbulent flows", J. Comput. Phys., Vol. 229, pp. 1739-1762.
- K.H. Kim and C. Kim, 2005, "Accurate, efficient and monotonic numerical methods for multi-dimensional com- pressible flows:: Part II: Multi-dimensional limiting process", Journal of computational physics, Vol. 208, pp. 570-615.
- M. Lesieur and S. Ossia, 2000 "3D isotropic turbulence at very high Reynolds numbers: EDQNM study", Journal of Turbulence, Vol. 1, pp. 1-25.
- M. Meyer, S. Hickel, and N.A. Adams, 2010, "'Assess- ment of Implicit Large-Eddy Simulation with a Conservative Immersed Interface Method for turbulent cylinder flow", Int. J. Heat Fluid Flow, Vol. 31, pp. 368-377.
- P. Sagaut, 2006, "'Large eddy simulation for incompress- ible flows: an introduction", Springer Verlag. P. Sagaut and C. Cambon, 2008, "'Homogeneous turbu- lence dynamics", Cambridge University Press.
- R. Samtaney, DI Pullin, and B. Kosović, 2001, "Direct numerical simulation of decaying compressible turbulence and shocklet statistics", Physics of Fluids, Vol. 13, 1415. C.W. Shu and S. Osher, 1989, "Efficient implementa- tion of essentially non-oscillatory shock-capturing schemes", J. Comput. Phys., Vol. 83, pp. 32-78.
- L. Skrbek and S.R. Stalp, 2000, "On the decay of ho- mogeneous isotropic turbulence", Physics of fluids, Vol. 12, 1997. I.V. Sytine, D.H. Porter, P.R. Woodward, S.W. Hodson, and K.H. Winkler, 2000, "Convergence tests for the piecewise parabolic method and Navier-Stokes solutions for homoge- neous compressible turbulence", J. Comput. Phys., Vol. 158, pp. 225-238.
- B. Thornber, A. Mosedale, and D. Drikakis, 2007, "On the implicit large eddy simulations of homogeneous decaying turbulence", J. Comput. Phys., Vol. 226, pp. 1902-1929. B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, and RJR Williams, 2008, "An improved reconstruction method for compressible flows with low Mach number features", J. Com- put. Phys., Vol. 227, pp. 4873-4894.
- V. Yakhot and K.R. Sreenivasan, 2005, "Anomalous scaling of structure functions and dynamic constraints on tur- bulence simulations", Journal of Statistical Physics, Vol. 121, pp. 823-841.