Academia.eduAcademia.edu

Outline

Diurnal Valley Winds in a Deep Alpine Valley: Model Results

Meteorology

https://doi.org/10.3390/METEOROLOGY2010007

Abstract

Thermally driven local winds are ubiquitous in deep Alpine valleys during fair weather conditions resulting in a unique wind climatology for any given valley. The accurate forecasting of these local wind systems is challenging, as they are the result of complex and multi-scale interactions. Even more so, if the aim is an accurate forecast of the winds from the near-surface to the free atmosphere, which can be considered a prerequisite for the accurate prediction of mountain weather. This study combines the evaluation of the simulated surface winds in several Alpine valleys with a more detailed evaluation of the wind evolution for a particular location in the Swiss Rhone valley, at the town of Sion during the month of September 2016. Four numerical simulations using the COSMO model are evaluated, two using a grid spacing of 1.1 km and two with a grid spacing of 550 m. For each resolution, one simulation is initialised with the soil moisture from the COSMO analysis and one with an inc...

References (28)

  1. Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: Oxford, UK, 2000.
  2. Zardi, D.; Whiteman, C. Diurnal mountain wind systems. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35-119.
  3. Schmidli, J. Daytime heat transfer processes over mountainous terrain. J. Atmos. Sci. 2013, 70, 4041-4066. [CrossRef]
  4. Rotach, M.W.; Wohlfahrt, G.; Hansel, A.; Reif, M.; Wagner, J.; Gohm, A. The world is not flat: Implications for the global carbon balance. Bull. Am. Meteorol. Soc. 2014, 95, 1021-1028. [CrossRef]
  5. Leukauf, D.; Gohm, A.; Rotach, M.W.; Wagner, J.S. The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: Sensitivity to the radiative forcing. J. Appl. Meteorol. Climatol. 2015, 54, 2199-2216. [CrossRef]
  6. Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 2018, 9, 102. [CrossRef]
  7. Lehner, M.; Rotach, M.W.; Obleitner, F. A method to identify synoptically undisturbed, clear-sky conditions for valley-wind analysis. Bound. Layer Meteorol. 2019, 173, 435-450. [CrossRef]
  8. Schmidli, J.; Böing, S.; Fuhrer, O. Accuracy of simulated diurnal valley winds in the Swiss Alps: Influence of grid resolution, topography filtering, and land surface datasets. Atmosphere 2018, 9, 196. [CrossRef]
  9. Chow, F.K.; Weigel, A.P.; Street, R.L.; Rotach, M.W.; Xue, M. High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments. J. Appl. Meteorol. Climatol. 2006, 45, 63-86. [CrossRef]
  10. Liu, Y.; Liu, Y.; Muñoz-Esparza, D.; Hu, F.; Yan, C.; Miao, S. Simulation of flow fields in complex terrain with WRF-LES: Sensitivity assessment of different PBL treatments. J. Appl. Meteorol. Climatol. 2020, 59, 1481-1501. [CrossRef]
  11. Schmidli, J.; Poulos, G.S.; Daniels, M.H.; Chow, F.K. External influences on nocturnal thermally driven flows in a deep valley. J. Appl. Meteorol. Climatol. 2009, 48, 3-23. [CrossRef]
  12. Schmid, F.; Schmidli, J.; Hervo, M.; Haefele, A. Diurnal valley winds in a deep alpine valley: Observations. Atmosphere 2020, 11, 54. [CrossRef]
  13. Steppeler, J.; Doms, G.; Schättler, U.; Bitzer, H.; Gassmann, A.; Damrath, U.; Gregoric, G. Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol. Atmos. Phys. 2003, 82, 75-96. [CrossRef]
  14. Klemp, J.B.; Wilhelmson, R.B. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 1978, 35, 1070-1096.
  15. Wicker, L.J.; Skamarock, W.C. Time-splitting methods for elastic models using forward time schemes. Mon. Weather. Rev. 2002, 130, 2088-2097. [CrossRef]
  16. Reinhardt, T.; Seifert, A. A three-category ice scheme for LMK. In COSMO Newsletter, No. 6, Consortium for Small-Scale Modeling; Deutsche Wetterdienst: Offenbach, Germany, 2006, pp. 115-120.
  17. Ritter, B.; Geleyn, J.F. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather. Rev. 1992, 120, 303-325. [CrossRef]
  18. Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851-875. [CrossRef]
  19. Raschendorfer, M. The new turbulence parameterization of LM. In COSMO Newsletter, No. 1, Consortium for Small-Scale Modeling; Deutsche Wetterdienst: Offenbach, Germany, 2001; pp. 89-97.
  20. Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities. Mon. Weather. Rev. 2011, 139, 3887-3905. [CrossRef]
  21. Schulz, J.P.; Vogel, G.; Becker, C.; Kothe, S.; Ahrens, B. Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12-17 April 2015; p. 6549.
  22. Hohenegger, C.; Brockhaus, P.; Bretherton, C.S.; Schär, C. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J. Clim. 2009, 22, 5003-5020. [CrossRef]
  23. Kaufmann, P. Association of surface stations to NWP model grid points. In COSMO Newsletter, No. 9.2, Consortium for Small-Scale Modeling; Deutsche Wetterdienst: Offenbach, Germany, 2008.
  24. Rotach, M.W. A collaborative effort to better understand, measure, and model atmospheric exchange processes over mountains. Bull. Am. Meteorol. Soc. 2022, 103, E1282-E1295. [CrossRef]
  25. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90-95. [CrossRef]
  26. Y, L.; Smith, R.B.; Grubisic, V. Using surface pressure variations to categorize diurnal valley circulations: Experiments in Ownes Valley. Mon. Weather. Rev. 2009, 137, 1753-1769.
  27. Schmidli, J.; Rotunno, R. Mechanisms of along-valley winds and heat exchange over mountainous terrain. J. Atmos. Sci. 2010, 67, 3033-3047. [CrossRef]
  28. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.