Temporal Enrichment and Querying of Ontology-Compliant Data
2020, Communications in Computer and Information Science
https://doi.org/10.1007/978-3-030-54623-6_12Abstract
We consider the problem of answering temporal queries on RDF stores, in presence of time-agnostic RDFS domain ontologies, of relational data sources that include temporal information, and of rules that map the domain information in the source schemas into the target ontology. Our proposed solution consists of two rule-based domainindependent algorithms. The first algorithm materializes target RDF data via a version of data exchange that enriches both the data and the ontology with temporal information from the relational sources. The second algorithm accepts as inputs temporal queries expressed in terms of the domain ontology, using SPARQL supplemented with a lightweight easy-to-use formalism for time annotations and comparisons. The algorithm translates the queries into the standard SPARQL form that respects the structure of the temporal RDF information while preserving the semantics of the questions, thus ensuring successful evaluation of the queries on the materialized temporally-enriched RDF data. In this paper we present the algorithms, report on their implementation and experimental results for two application domains, and discuss future work.
References (32)
- Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann, 2nd edn. (2011)
- Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26 (1983)
- Antoniou, G., Groth, P.T., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer, 3rd Edition. MIT Press (2012)
- Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange. Cambridge University Press (2014)
- Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Za- kharyaschev, M.: Ontology-mediated query answering over temporal data: A sur- vey. In: TIME 2017, October 16-18, 2017, Mons, Belgium. pp. 1:1-1:37 (2017)
- Boneva, I., Dusart, J., Fernández-Álvarez, D., Gayo, J.E.L.: Shape designer for ShEx and SHACL constraints. In: Proc. ISWC Satellite Tracks. pp. 269-272 (2019)
- Boneva, I., Lozano, J., Staworko, S.: Relational to RDF data exchange in presence of a Shape Expression Schema. arXiv preprint arXiv:1804.11052 (2018)
- Cheng, Y., Ding, P., et al.: Which category is better: Benchmarking relational and graph database management systems. D. Sci. Engnr. 4, 309-322 (2019)
- Chomicki, J., Toman, D.: Temporal databases. In: Fisher, M., Gabbay, D.M., Vila, L. (eds.) Handbook of Temporal Reasoning in AI, pp. 429-467. Elsevier (2005)
- Coelho, F.: DataFiller -generate random data from database schema. https: //www.cri.ensmp.fr/people/coelho/datafiller.html (2014)
- Combating Antimicrobial Resistance: A One Health Approach to a Global Threat: Proc. National Academies of Sciences Workshop. National Academies Press (2017)
- Curé, O., Blin, G. (eds.): RDF Database Systems. Morgan Kaufmann (2015)
- Dignös, A., Glavic, B., Niu, X., Böhlen, M., Gamper, J.: Snapshot semantics for temporal multiset relations. Proc. VLDB Endow. 12(6), 639-652 (2019)
- Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89-124 (2005)
- Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Cleaning data with Llunatic. VLDBJ (2019), https://doi.org/10.1007/s00778-019-00586-5
- Golshanara, L., Chomicki, J.: Temporal data exchange. Inf. Systems 87 (2020)
- Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O., Pérez, J.: Foundations of Semantic Web databases. Journal of Computer and System Sciences 77(3), 520-541 (2011)
- Gutiérrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19(2), 207-218 (2007)
- Hou, P.Y., Ao, J., Rindos, A., Keelara, S., Fedorka-Cray, P., Chirkova, R.: Col- laborative workflow for analyzing large-scale data for antimicrobial resistance: An experience report. In: Proc. IEEE BigData (December 2019)
- Kaufmann, M., Fischer, P.M., May, N., Tonder, A., Kossmann, D.: TPC-BiH: A benchmark for bitemporal databases. In: Nambiar, R., Poess, M. (eds.) Perfor- mance Characterization and Benchmarking (2014)
- Lu, W., Zhao, Z., Wang, X., et al.: A lightweight and efficient temporal database management system in TDSQL. Proc. VLDB Endow. 12, 2035-2046 (2019)
- Michel, F., Montagnat, J., Zucker, C.F.: A survey of RDB to RDF translation approaches and tools (2014), Rapport de Recherche ISRN I3S/RR 2013-04-FR
- Nielsen, J.: Usability Engineering. Morgan Kaufmann (1993)
- Özsu, M.T.: A survey of RDF data management systems. Frontiers of Computer Science 10(3), 418-432 (2016)
- Polleres, A., Hogan, A., Delbru, R., Umbrich, J.: RDFS and OWL reasoning for linked data. In: Proc. Semantic Technologies for Intelligent Data Access (2013)
- RDF Semantics: W3C recommendation 10 February 2004 (2004), Hayes, Patrick (Ed.), https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
- RDF Vocabulary Description Language: RDF Schema (2014), Brickley, D. and Guha, R.V. (Eds), https://www.w3.org/TR/rdf-schema/
- SPARQL query language for RDF. W3C 15/01/2008, https://www.w3.org/TR/ rdf-sparql-query/
- Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Proc. ESWC. pp. 308-322 (2009)
- TPC benchmark H rev. 2.18.0. http://www.tpc.org/tpc_documents_current_ versions/pdf/tpc-h_v2.18.0.pdf (2018)
- Working with the TPCH data. https://docs.cambridgesemantics.com/ anzograph/userdoc/ghib.htm#top-supplier/ (2020)
- Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for representing, reasoning and querying with annotated Semantic Web data. Journal of Web Semantics 11, 72-95 (2012)