Potential of Negative Ion Mode Proteomics: MS1-Only Approach
2023, bioRxiv (Cold Spring Harbor Laboratory)
https://doi.org/10.1101/2023.03.06.530802Abstract
Current proteomics approaches rely almost exclusively on using positive ionization mode, which results in inefficient ionization of many acidic peptides. With an equal quantity of acidic and basic proteins and, correspondingly, the similar number for their derived peptides in case of the human proteome, this inefficient ionization poses both a substantial challenge and a potential. In this work, we study the efficiency of protein identification in the bottom-up proteomic analysis performed in negative ionization mode, using the recently introduced MS1-only ultra-fast data acquisition method DirectMS1. This method is based on accurate peptide mass measurements and predicted retention times. Our method achieves the highest rate of protein identifications in negative ion mode to date, with over 1,000 proteins identified in a human cell line at a 1% false discovery rate using a single-shot 10-min separation gradient, which is comparable with hours-long MS/MS-based analyses. Evaluating the proteins as a function of pI indicated preferable identification of the acidic part of the proteome. Optimization of separation and mass spectrometric experimental conditions facilitated the performance of the method with the best results in terms of spray stability and signal abundance obtained using mobile buffers at 2.5 mM imidazole and 3% isopropanol. The work also highlighted the complementarity of data acquired in positive and negative modes: Combining the results for all replicates for both polarities, the number of identified proteins increased up to 1,774. Finally, we performed analysis of the method's efficiency when different proteases are used for protein digestion. Among the four studied proteases (LysC, GluC, AspN, and trypsin), we found that trypsin and LysC performed best in terms of protein identification yield. Thus, digestion procedures used for positive mode proteomics can be efficiently utilized for analysis in negative ion mode.
References (50)
- Meissner, F.; Geddes-McAlister, J.; Mann, M.; Bantscheff, M., The emerging role of mass spectrometry-based proteomics in drug discovery. Nature Reviews Drug Discovery 2022.
- Altelaar, A. F. M.; Munoz, J.; Heck, A. J. R., Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Reviews Genetics 2013, 14 (1), 35-48.
- Wisniewski, J. R.; Zougman, A.; Nagaraj, N.; Mann, M., Universal sample preparation method for proteome analysis. Nature Methods 2009, 6 (5), 359-U60.
- Bigwarfe, P. M.; Wood, T. D., Effect of ionization mode in the analysis of proteolytic protein digests. International Journal of Mass Spectrometry 2004, 234 (1-3), 185-202.
- Greer, S. M.; Cannon, J. R.; Brodbelt, J. S., Improvement of Shotgun Proteomics in the Negative Mode by Carbamylation of Peptides and Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry 2014, 86 (24), 12285-12290.
- Solari, F. A.; Dell'Aica, M.; Sickmann, A.; Zahedi, R. P., Why phosphoproteomics is still a challenge. Molecular Biosystems 2015, 11 (6), 1487-1493.
- Roth, Z.; Yehezkel, G.; Khalaila, I., Identification and Quantification of Protein Glycosylation. International Journal of Carbohydrate Chemistry 2012, 1-10.
- Palmisano, G.; Larsen, M. R.; Packer, N. H.; Thaysen-Andersen, M., Structural analysis of glycoprotein sialylation -part II: LC-MS based detection. Rsc Advances 2013, 3 (45), 22706-22726.
- Liigand, P.; Kaupmees, K.; Haav, K.; Liigand, J.; Leito, I.; Girod, M.; Antoine, R.; Kruve, A., Think Negative: Finding the Best Electrospray Ionization/MS Mode for Your Analyte. Analytical Chemistry 2017, 89 (11), 5666-5669.
- Cech, N. B.; Enke, C. G., Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews 2001, 20 (6), 362-387.
- Wampler, F. M.; Blades, A. T.; Kebarle, P., Negative-ion-electrospray mass-spectrometry of nucleotides -ionization from water solution with SF6 discharge suppression. Journal of the American Society for Mass Spectrometry 1993, 4 (4), 289-295.
- McClory, P. J.; Hakansson, K., Corona Discharge Suppression in Negative Ion Mode Nanoelectrospray Ionization via Trifluoroethanol Addition. Analytical Chemistry 2017, 89 (19), 10188- 10193.
- Hiraoka, K.; Kudaka, I., Negative-mode electrospray-mass spectrometry using nonaqueous solvents. Rapid Communications in Mass Spectrometry 1992, 6 (4), 265-268.
- Nisavic, M.; Hozic, A.; Hamersak, Z.; Radic, M.; Butorac, A.; Duvnjak, M.; Cindric, M., High-Efficiency Microflow and Nanoflow Negative Electrospray Ionization of Peptides Induced by Gas-Phase Proton Transfer Reactions. Analytical Chemistry 2017, 89 (9), 4847-4854.
- Ranganathan, N.; Li, C.; Suder, T.; Karanji, A. K.; Li, X. J.; He, Z. Y.; Valentine, S. J.; Li, P., Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI) for Voltage-Free Liquid Chromatography- Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2019, 30 (5), 824-831.
- Majuta, S. N.; DeBastiani, A.; Li, P.; Valentine, S. J., Combining Field-Enabled Capillary Vibrating Sharp-Edge Spray Ionization with Microflow Liquid Chromatography and Mass Spectrometry to Enhance 'Omits Analyses. Journal of the American Society for Mass Spectrometry 2021, 32 (2), 473- 485.
- Zuo, M. Q.; Sun, R. X.; Fang, R. Q.; He, S. M.; Dong, M. Q., Characterization of collision- induced dissociation of deprotonated peptides of 4-16 amino acids using high-resolution mass spectrometry. International Journal of Mass Spectrometry 2019, 445.
- Pu, D.; Cassady, C. J., Negative ion dissociation of peptides containing hydroxyl side chains. Rapid Communications in Mass Spectrometry 2008, 22 (2), 91-100.
- Ewing, N. P.; Cassady, C. J., Dissociation of multiply charged negative ions for hirudin (54-65), fibrinopeptide B, and insulin A (oxidized). Journal of the American Society for Mass Spectrometry 2001, 12 (1), 105-116.
- Bowie, J. H.; Brinkworth, C. S.; Dua, S., Collision-induced fragmentations of the (M-H)(-) parent anions of underivatized peptides: An aid to structure determination and some unusual negative ion cleavages. Mass Spectrometry Reviews 2002, 21 (2), 87-107.
- Tran, T. T. N.; Wang, T. F.; Hack, S.; Hoffmann, P.; Bowie, J. H., Can collision-induced negative-ion fragmentations of M-H (-) anions be used to identify phosphorylation sites in peptides? Rapid Communications in Mass Spectrometry 2011, 25 (23), 3537-3548.
- Wang, T. F.; Tran, T. T. N.; Andreazza, H. J.; Bilusich, D.; Brinkworth, C. S.; Bowie, J. H., Negative ion cleavages of (M-H)(-) anions of peptides. Part 3. Post-translational modifications. Mass Spectrometry Reviews 2018, 37 (1), 3-21.
- Budnik, B. A.; Haselmann, K. F.; Zubarev, R. A., Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. Chemical Physics Letters 2001, 342 (3-4), 299- 302.
- Kjeldsen, F.; Horning, O. B.; Jensen, S. S.; Giessing, A. M. B.; Jensen, O. N., Towards liquid chromatography time-scale peptide sequencing and characterization of post-translational modifications in the negative-ion mode using electron detachment dissociation tandem mass spectrometry. Journal of the American Society for Mass Spectrometry 2008, 19 (8), 1156-1162.
- McAlister, G. C.; Russell, J. D.; Rumachik, N. G.; Hebert, A. S.; Syka, J. E. P.; Geer, L. Y.; Westphall, M. S.; Pagliarini, D. J.; Coon, J. J., Analysis of the Acidic Proteome with Negative Electron-Transfer Dissociation Mass Spectrometry. Analytical Chemistry 2012, 84 (6), 2875-2882.
- Riley, N. M.; Rush, M. J. P.; Rose, C. M.; Richards, A. L.; Kwiecien, N. W.; Bailey, D. J.; Hebert, A. S.; Westphall, M. S.; Coon, J. J., The Negative Mode Proteome with Activated Ion Negative Electron Transfer Dissociation (AI-NETD). Molecular & Cellular Proteomics 2015, 14 (10), 2644- 2660.
- Rush, M. J. P.; Riley, N. M.; Westphall, M. S.; Syka, J. E. P.; Coon, J. J., Sulfur Pentafluoride is a Preferred Reagent Cation for Negative Electron Transfer Dissociation. Journal of the American Society for Mass Spectrometry 2017, 28 (7), 1324-1332.
- Madsen, J. A.; Xu, H.; Robinson, M. R.; Horton, A. P.; Shaw, J. B.; Giles, D. K.; Kaoud, T. S.; Dalby, K. N.; Trent, M. S.; Brodbelt, J. S., High-throughput Database Search and Large-scale Negative Polarity Liquid Chromatography-Tandem Mass Spectrometry with Ultraviolet Photodissociation for Complex Proteomic Samples. Molecular & Cellular Proteomics 2013, 12 (9), 2604-2614.
- Greer, S. M.; Bern, M.; Becker, C.; Brodbelt, J. S., Extending Proteome Coverage by Combining MS/MS Methods and a Modified Bioinformatics Platform Adapted for Database Searching of Positive and Negative Polarity 193 nm Ultraviolet Photodissociation Mass Spectra. Journal of Proteome Research 2018, 17 (4), 1340-1347.
- Ivanov, M. V.; Bubis, J. A.; Gorshkov, V.; Tarasova, I. A.; Levitsky, L. I.; Lobas, A. A.; Solovyeva, E. M.; Pridatchenko, M. L.; Kjeldsen, F.; Gorshkov, M. V., DirectMS1: MS/MS-Free Identification of 1000 Proteins of Cellular Proteomes in 5 Minutes. Analytical Chemistry 2020, 92 (6), 4326-4333.
- Ivanov, M. V.; Tarasova, I. A.; Levitsky, L. I.; Solovyeva, E. M.; Pridatchenko, M. L.; Lobas, A. A.; Bubis, J. A.; Gorshkov, M. V., MS/MS-Free Protein Identification in Complex Mixtures Using Multiple Enzymes with Complementary Specificity. Journal of Proteome Research 2017, 16 (11), 3989-3999.
- Smith, R. D.; Anderson, G. A.; Lipton, M. S.; Pasa-Tolic, L.; Shen, Y. F.; Conrads, T. P.; Veenstra, T. D.; Udseth, H. R., An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2002, 2 (5), 513-523.
- Moruz, L.; Tomazela, D.; Kall, L., Training, Selection, and Robust Calibration of Retention Time Models for Targeted Proteomics. Journal of Proteome Research 2010, 9 (10), 5209-5216.
- Bouwmeester, R.; Gabriels, R.; Hulstaert, N.; Martens, L.; Degroeve, S., DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nature Methods 2021, 18 (11), 1363-+.
- Ivanov, M. V.; Bubis, J. A.; Gorshkov, V.; Abdrakhimov, D. A.; Kjeldsen, F.; Gorshkov, M.
- V., Boosting MS1-only Proteomics with Machine Learning Allows 2000 Protein Identifications in Single-Shot Human Proteome Analysis Using 5 min HPLC Gradient. Journal of Proteome Research 2021, 20 (4), 1864-1873.
- Gillet, L. C.; Leitner, A.; Aebersold, R., Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annual Review of Analytical Chemistry, Vol 9 2016, 9, 449-472.
- Abdrakhimov, D. A.; Bubis, J. A.; Gorshkov, V.; Kjeldsen, F.; Gorshkov, M. V.; Ivanov, M.
- V., Biosaur: An open-source Python software for liquid chromatography-mass spectrometry peptide feature detection with ion mobility support. Rapid Communications in Mass Spectrometry 2021.
- Lee, S.; Park, H.; Kim, H., Comparison of false-discovery rates of various decoy databases. Proteome Science 2021, 19 (1).
- Osorio, D.; Rondon-Villarreal, P.; Torres, R., Peptides: A Package for Data Mining of Antimicrobial Peptides. R Journal 2015, 7 (1), 4-14.
- Huang, D. W.; Sherman, B. T.; Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 2009, 4 (1), 44-57.
- Huang, D. W.; Sherman, B. T.; Lempicki, R. A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 2009, 37 (1), 1-13.
- Antoine, R.; Joly, L.; Tabarin, T.; Broyer, M.; Dugourd, P.; Lemoine, J., Photo-induced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Communications in Mass Spectrometry 2007, 21 (2), 265-268.
- Ganisl, B.; Taucher, M.; Riml, C.; Breuker, K., Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids. European Journal of Mass Spectrometry 2011, 17 (4), 333-343.
- Tokmakov, A. A.; Kurotani, A.; Sato, K. I., Protein pI and Intracellular Localization. Frontiers in Molecular Biosciences 2021, 8.
- Kurotani, A.; Tokmakov, A. A.; Sato, K. I.; Stefanov, V. E.; Yamada, Y.; Sakurai, T., Localization-specific distributions of protein pI in human proteome are governed by local pH and membrane charge. Bmc Molecular and Cell Biology 2019, 20 (1).
- Swaney, D. L.; Wenger, C. D.; Coon, J. J., Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics. Journal of Proteome Research 2010, 9 (3), 1323-1329.
- Leitner, A.; Reischl, R.; Walzthoeni, T.; Herzog, F.; Bohn, S.; Forster, F.; Aebersold, R., Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography. Molecular & Cellular Proteomics 2012, 11 (3).
- Ivanov, M. V.; Bubis, J. A.; Gorshkov, V.; Tarasova, I. A.; Levitsky, L. I.; Solovyeva, E. M.; Lipatova, A. V.; Kjeldsen, F.; Gorshkov, M. V., DirectMS1Quant: Ultrafast Quantitative Proteomics with MS/MS-Free Mass Spectrometry. Analytical Chemistry 2022, 94 (38), 13068-13075.