Routes of phlogopite weathering by three fungal strains
2016, Fungal Biology
https://doi.org/10.1016/J.FUNBIO.2016.08.007Abstract
Fungi dissolve soil minerals by acidifying their microenvironments, exuding chelating molecules, and by mechanical disruption of the crystal lattice. Dissolution may occur at two scales: microscale (surface of contact between fungus and mineral) and medium scale (affecting entire mineral grains). Mineral weathering by fungi and other microorganisms is being intensely investigated as thought to be a significant global contribution to weathering, perhaps also modifying weathering products, especially clay minerals. Here we report fungal dissolution of phlogopite (Mg-Fe-rich mica) in experiments with three fungal strains (Alternaria tenuissima, Cladosporium cladosporioides and Stilbella sp.) grown on solid medium for 30 days at 21 °C and 96-100% relative humidity. The focus was to investigate the chemical changes induced by the fungi on phlogopite, translocation of micronutrients to the mycelium and the possible differences between the three species. The study used variablepressure SEM-EDS equipped with both secondary electrons with charge contrast imaging and backscattered electrons. Statistical analysis of the results (principal component and discriminant analysis) discriminated between the weathering activities of the three fungal species, which increased from Stilbella to C. cladosporioides to A. tenuissima, in agreement with the respective decreasing pH values measured in the media (6.4, 5.8, 5.2 ± 0.03). Phlogopite weathering features were irregular and variable (contrast change, troughs, lateral dissolution, flake thinning, breakdown), apparently not caused by direct contact with fungal hyphae. EDS values indicated several weathering stages and two or more dissolution mechanisms, one of them suggesting cation rearrangement in the mica towards decreasing octahedral and interlayer cation contents that produced Al-rich smectite. Intimate fungusmineral interaction was observed as hyphal attachment to phlogopite surfaces, penetration between sheets at the edges (where phlogopite structure is more labile) and changes in the 3 contrast of the mica surface around attached hyphae. The lack of observable dissolution traces from such contact interaction is interpreted as the result of effacing by the more intense acid leaching operating at larger scale.
References (82)
- Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vralstad T, Liimatainen K, Peintner U, Koljalg U, 2010. The UNITE database for molecular identification of fungi -recent updates and future perspectives. New Phytologist 186: 281-285.
- Adeyemi AO, Gadd GM, 2005. Fungal degradation of calcium-, lead-and silicon-bearing minerals. BioMetals 18: 269-281.
- Ahn JH, Peacor DR, 1987. Kaolinization of biotite: TEM data and implications for an alteration mechanism. American Mineralogist 72: 353-356.
- Aldega L, Cuadros J, Laurora A, Rossi A, 2009. Weathering of phlogopite to beidellite in a karstic environment. American Journal of Science 309: 689-710.
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman JD, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402.
- Aoudjit H, Robert M, Elsass F, Curmi P, 1995. Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Minerals 30: 135-147.
- Arocena JM, Velde B, 2009. Transformation of chlorites by primary biological agents -a synthesis of X-ray diffraction studies. Geomicrobiology Journal 26: 382-388.
- Arocena JM, Velde B, Robertson SJ, 2012. Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops. Applied Clay Science 64: 12-17
- Arvieu J-C, Leprince F, Plassard C, 2003. Release of oxalate and protons by ectomycorrhizal fungi in response to P deficiency and calcium carbonate in nutrient solution. Annals of Forest Science 60: 209-215.
- Balogh-Brunstad Z, Keller CK, Bormann BT, O'Brien R, Wang D, Hawley G, 2008a. Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance. Global Biogeochemical Cycles 22: GB1007. doi:10.1029/2007GB002957.
- Balogh-Brunstad Z, Keller CK, Dickinson JT, Stevens F, Li CY, Bormann BT, 2008b. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochimica et Cosmochimica Acta 72: 2601-2618.
- Banfield JF, Barker WW, Welch SA, Taunton A, 1999. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America 96: 3404-3411.
- Barker WW, Banfield JF, 1996. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chemical Geology 132: 55-69.
- Barker WW, Welch SA, Banfield JF, 1997. Biogeochemical weathering of silicate minerals. Reviews in Mineralogy and Geochemistry 35: 391-428.
- Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE, 2002. Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417: 729-731.
- Bonneville S, Morgan DJ, Schmalenberger A, Bray A, Brown A, Banwart SA, Benning LG, 2011. Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochimica et Cosmochimica Acta 75: 6988-7005.
- Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, Benning LG, 2009. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology 37: 615-618.
- Boyle JR, Voigt GK 1973 Biological weathering of silicate minerals, implications for tree nutrition and soil genesis. Plant Soil 38: 191-201.
- Boyle JR,Voigt GK, Sawhney BL, 1967. Biotite flakes: alteration by chemical and biological treatment. Science 155: 193-195.
- Bray AW, Oelkers EH, Bonneville S, Wolff-Boenisch D, Potts NJ, Fones G, Benning LG, 2015. The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et Cosmochimica Acta 164: 127-145.
- Burford EP, Fomina M, Gadd GM 2003a Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine 67: 1127-1155.
- Burford EP, Kierans M., Gadd GM, 2003b. Geomycology: fungi in mineral substrata. Mycologist, Volume 17, Part 3 August. Cambridge University Press Printed in the United Kingdom. DOI: 10.1017/S0269915X03003112
- Burford EP, Hillier S, Gadd GM, 2006. Biomineralization of fungal hyphae with calcite (CaCO 3 ) and calcium oxalate mono-and dihydrate in carboniferous limestone microcosms. Geomicrobiology Journal 23: 599-611.
- Burgstaller W, Schinner F, 1993. Leaching of metals with fungi. Journal of Biotechnology 27: 91-116.
- Chen L-H, Lin C-H, Chung K-R, 2013. A non ribosomal peptide synthetase mediates siderophore production and virulence in the citrus fungal pathogen Alternaria alternata. Molecular Plant Pathology 14: 497-505.
- Costa A, Chiodini G, Granieri D, Folch A, Caliro S, Avino R, Cardellini C 2008 A shallow- layer model for heavy gas dispersion from natural sources: Application and hazard assessment at Caldara di Manziana, Italy. Geochemistry, Geophysics, Geosystems 9: Q03002, doi: 10.1029/2007GC001762.
- Crawford RH, Floyed M, Li CY, 2000. Degradation of serpentine and muscovite rock minerals and immobilization of cations by soil Penicillium spp. Phyton-annales rei botanicae 40: 315-322.
- Cuadros J, Afsin B, Jadubansa P, Ardakani M, Ascaso C, Wierzchos J, 2013. Microbial and inorganic control on the composition of clay from volcanic glass alteration experiments. American Mineralogist 98: 319-334.
- de la Calle, C, Suquet, H, 1988. Vermiculite. In: Bailey SW (ed), Hydrous Phyllosilicates (exclusive of micas), Vol 19, Mineralogical Society of America, Washington, DC, pp. 455-496.
- Driessen P, Deckers J, Spaargaren O, Nachtergaele F, 2001. Lecture notes on the major soils of the world. FAO, Rome, ISBN 925-104637-9.
- Fahmy T 2003 XLSTAT-Pro 7.0 (XLSTAT), Addinsoft. Paris, France.
- Fomina M, Burford EP, Gadd GM, 2006. Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility. In: Gadd GM (ed), Fungi in Biogeochemical Cycles, Cambridge University Press, Cambridge, MA, pp. 236-266.
- Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM, 2005. Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Applied Environmental Microbiology 71: 371-381.
- Fomina M., Podgorsky VS, Olishevska SV, Kadoshnikov VM, Pisanska IR, Hillier S, Gadd GM, 2007. Fungal Deterioration of Barrier Concrete used in Nuclear Waste Disposal. Geomicrobiology Journal 24: 643-653.
- Foster MS, Bills GF 2011 Biodiversity of Fungi: Inventory and Monitoring Methods, Elsevier Academic Press, USA, 777 pp.
- Gadd GM, 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology 41: 47- 92.
- Gadd GM, Sayer JA, 2000. Fungal transformations of metals and metalloids. In: Lovley DR (ed), Environmental Microbe-Metal Interactions, American Society for Microbiology, Washington, DC, pp. 237-256.
- Garrels RM, Christ CL, 1965. Solutions, Minerals, and Equilibria. Harper and Row, New York. 450 pp.
- Gazzè SA, Saccone L, Ragnarsdottir KV, Smits MM, Duran A. L., Leake JR, Banwart SA, McMaster TJ, 2012. Nanoscale channels on ectomycorrhizal-colonized chlorite: Evidence for plant-driven fungal dissolution. Journal of Geophysical Research 117: G00N09, doi:10.1029/2012JG002016.
- Glass NL, Donaldson GC, 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323-1330.
- Gleeson DB, Clipson NJW, Melville K, Gadd GM, McDermott FP, 2005. Mineralogical control of fungal community structure in a weathered pegmatitic granite. Microbial Ecology 50: 360-368.
- Hansel CM, Zeiner CA, Santelli CM, Webb SM, 2012. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proceedings of the National Academy of Sciences of the United States of America 109: 12621-12625.
- Hinsinger P, Plassard C, Jaillard B, 2006. Rhizosphere: a new frontier for soil biogeochemistry. Journal of Geochemical Exploration 88: 210-213.
- Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N, 2004. The role of fungi in weathering. Frontiers in Ecology and the Environment 2: 258-264.
- Hoffland E, Smits MM, Van Schöll L, Landeweert, R, 2005. Rock-eating mycorrhizas: mobilizing nutrients from minerals? In: Li CJ, Zhang FS, Doberman A, Hinsinger P, Lambers H, Li XL, Marschner P, Maene L, McGrath S, Oenema O, Peng SB, Rengel Z, Shen QR., Welch R, Von Wirén N, Yan XL, Zhu YG (eds), Plant nutrition for food security, human health and environmental protection, Beijing, pp 802-803.
- Hopf J, Langenhorst F, Pollok K, Merten D, Kothe E, 2009. Influence of microorganisms on biotite dissolution: An experimental approach. Chemie Der Erde-Geochemistry 69: 45- 56. doi:10.1016/j.chemer.2008.11.001.
- Jalal MA, van der Helm D, 1989. Siderophores of highly phytopathogenic Alternaria longipes. Structures of hydroxycoprogens. BioMetals 2: 11-17.
- Jenny H, 1980. The Soil Resource: Origin and Behavior. Springer-Verlag, New York.
- Jongmans AG, vanBreemen N, Lundström U, vanHees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M, 1997. Rock-eating fungi. Nature 389: 682-683. doi:10.1038/39493.
- Kalinowski BE, Schweda P, 1996. Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochimica et Cosmochimica Acta 60: 367- 385. doi:10.1016/0016-7037(95)00411-4.
- Karsch-Mizrachi I, Nakamura Y, Cochrane G, 2012. The International Nucleotide Sequence Database Collaboration. Nucleic Acids Research 40: D33-D37.
- Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Vrålstad T, Ursing BM, 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166: 1063-1068.
- Kuwahara Y, Aoki Y, 1995. Dissolution process of phlogopite in acid solutions. Clays and Clay Minerals 43: 39-50.
- Legendre P, Legendre L, 1998. Numerical Ecology, second Ed. Amsterdam, Elsevier.
- Leyval C, Berthelin J, 1991. Weathering of mica by roots and rhizospheric microorganisms of pine. Soil Science Society of America Journal 55: 1009-1016.
- Li Z, Liu L, Chen J, Teng HH, 2016. Cellular dissolution at hypha-and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology, G37561.1. doi:10.1130/G37561.1
- Lou J, Fu L, Peng Y, Zhou L, 2013. Metabolites from Alternaria Fungi and Their Bioactivities. Molecules 18: 5891-5935.
- Mackenzie RC (1970) Differential Thermal Analysis, London, Academic Press.
- Massart DL, Vandeginste BGM, Buydens LMC, de Jong S, Lewi PJ, Smeyers Verbeke J, 1998. Handbook of Chemometrics and Qualimetrics. Part B. Elsevier Science, Amsterdam.
- Moore DM, Reynolds RC Jr, 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd edition. Oxford University Press, Oxford. 378 pp.
- Paris F, Bonnaud P, Ranger J, Lapeyrie F, 1995. In vitro weathering of phlogopite by ectomycorrhizal fungi: 1. Effect of K + and Mg 2+ deficiency on phyllosilicate evolution. Plant & Soil 177: 191-201. doi:10.1007/BF00010125.
- Paris F, Botton B, Lapeyrie F, 1996. In vitro weathering of phlogopite by ectomycorrhizal fungi. II. Effect of K + and Mg 2+ deficiency and N sources on accumulation of oxalate and H + . Plant & Soil 179: 141-150.
- Robertson K, Gauvin R, Finch J, 2005. Application of charge contrast imaging in mineral characterization. Minerals Engineering 18: 343-352.
- Rosling A, Lindahl BD, Finlay RD, 2004a. Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytologist 162, 795-802.
- Rosling A, Lindahl BD, Taylor AFS, Finlay RD, 2004b. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology 47: 31-37.
- Rosling A, Suttle KB, Johansson E, Van Hees PAW, Banfield JF, 2007. Phosphorous availability influences the dissolution of apatite by soil fungi. Geobiology 5: 265-280.
- Saccone L, Gazze SA, Ragnarsdottir KV, Leake JR, Duran AL, Hallam KR, Mcmaster TJ, 2009. Paxillus involutus hyphae: imaging their structure and interaction with mineral surfaces using AFM. Geochimica et Cosmochimica Acta 73: A1140.
- Scott AD, Smith SJ,. 1966. Susceptibility of interlayer potassium in micas to exchange with sodium. Clays Clay Mineral 14: 69-81
- Sneath PHA, Sokal RR, 1973. Numerical Taxonomy. Freeman, San Francisco, USA.
- Sterflinger K, 2000. Fungi as geologic agents. Geomicrobiology Journal 17: 97-124.
- Thomas P, 2012. Long-term survival of Bacillus spores in alcohol and identification of 90% ethanol as relatively more spori/bactericidal. Current Microbiology 64, 130-139.
- Wallander H, 2006. Mineral dissolution by ectomycorrhizal fungi. In: Gadd GM (ed), Fungi in Biogeochemical Cycles, Cambridge University Press, New York, NY, pp. 328-343.
- Wallander H, Wickman T, 1999. Biotite and microcline as potassium sources in ectomycorrhizal and non-ectomycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9: 25- 32.
- Watt GR, Griffin B, Kinny P, 2000. Charge contrast imaging of geological materials in the environmental scanning electron microscope. American Mineralogist 85: 1784-1794.
- Weaver CE, 1989. Clays, Muds, and Shales. Developments in Sedimentology v. 44, Elsevier, Amsterdam.
- Weed SB, Davey CB, Cook MG, 1969. Weathering of mica by fungi. Soil Science Society of America Proceedings 33: 702-706.
- Wei Z, Kierans M, Gadd GM, 2012. A model sheet mineral system to study fungal bioweathering of mica. Geomicrobiology Journal 29: 323-331.
- Welch SA, Vandevivere P 1994 Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiology Journal 12: 227-238.
- White TJ, Bruns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds), PCR Protocols: a guide to methods and applications, Academic Press, New York, USA, pp. 315-322.
- Wierzchos J, Ascaso C, 1996. Morphological and chemical features of bioweathered granitic biotite induced by lichen activity. Clays and Clay Minerals 44: 652-657.
- Williams BK, Titus K 1988 Assessment of sampling stability in ecological applications of discriminant analysis. Ecology 69: 1275-1285.
- Yuan L, Huang JG, Li XL, Christie P, 2004. Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant & Soil 262: 351- 361.