Academia.eduAcademia.edu

Outline

Equivalence oftranspaths in ion channels

2006, Physical Review E

https://doi.org/10.1103/PHYSREVE.73.046126

Abstract

We explore stochastic models for the study of ion transport in biological cells. Analysis of these models explains and explores an interesting feature of ion transport observed by biophysicists. Namely, the average time it takes ions to cross certain ion channels is the same in either direction, even if there is an electric potential difference across the channels. It is shown for simple single ion models that the distribution of a path ͑i.e., the history of location versus time͒ of an ion crossing the channel in one direction has the same distribution as the time-reversed path of an ion crossing the channel in the reverse direction. Therefore, not only is the mean duration of these paths equal, but other measures, such as the variance of passage time or the mean time a path spends within a specified section of the channel, are also the same for both directions of traversal. The feature is also explored for channels with interacting ions. If a system of interacting ions is in reversible equilibrium ͑net flux is zero͒, then the equivalence of the left-to-right trans paths with the time-reversed right-to-left trans paths still holds. However, if the system is in equilibrium, but not reversible equilibrium, then such equivalence need not hold.

References (43)

  1. B. Eisenberg, Contemp. Phys. 39, 447 ͑1998͒.
  2. B. Hille, Ionic Channels of Excitable Membranes, 3nd ed. ͑Sinauer Associates, Sunderland, MA, 2001͒.
  3. K. Cooper, E. Jakobsson, and P. Wolynes, Prog. Biophys. Mol. Biol. 46, 51 ͑1985͒.
  4. S. Chung and S. Kuyucak, Biochim. Biophys. Acta 1565, 267 ͑2002͒.
  5. D. G. Levitt, J. Gen. Physiol. 113, 789 ͑1999͒.
  6. R. J. Mashi, J. Schnitzer, and E. Jakobsson, Biophys. J. 81, 2473 ͑2001͒.
  7. E. Jakobsson, Methods 14, 342 ͑1998͒.
  8. S. Kuyucak, O. S. Andersen, and S. Chung, Rep. Prog. Phys. 64, 1427 ͑2001͒.
  9. D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 ͑1978͒.
  10. W. F. van Gusteren, H. J. C. Berendsen, and J. A. C. Rullmann, Mol. Phys. 44, 69 ͑1981͒.
  11. W. F. van Gusteren and H. J. C. Berendsen, Mol. Phys. 45, 637 ͑1982͒.
  12. S. Bek and E. Jakobsson, Biophys. J. 66, 1028 ͑1994͒.
  13. B. Corry, S. Kuyucak, and S. Chung, Biophys. J. 78, 2364 ͑2000͒.
  14. D. G. Levitt, Biophys. J. 37, 575 ͑1982͒.
  15. D. G. Levitt, Annu. Rev. Biophys. Biophys. Chem. 15, 29 ͑1986͒.
  16. D. G. Levitt, Biophys. J. 59, 271 ͑1991͒.
  17. R. S. Eisenberg, M. M. Klosek, and Z. Schuss, J. Chem. Phys. 102, 1767 ͑1995͒.
  18. ͓18͔ Z. Schuss, B. Nadler, and R. S. Eisenberg, Phys. Rev. E 64, 036116 ͑2001͒.
  19. E. Jakobsson and S. Chiu, Biophys. J. 52, 33 ͑1987͒.
  20. F. P. Kelly, Reversibility and Stochastic Networks ͑Wiley, Chichester, 1979͒.
  21. J. Kent, Adv. Appl. Probab. 10, 819 ͑1978͒.
  22. J. Alvarez, Ph.D. thesis, University of Illinois at Urbana- Champaign, 2004.
  23. A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov, J. Chem. Phys. 119, 3943 ͑2003͒.
  24. A. Komogorov, Math. Ann. 113, 766 ͑1937͒.
  25. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes ͑North-Holland, Amsterdam, 1981͒.
  26. ͓26͔ S. N. Ethier and T. G. Kurtz, Markov Processes: Character- ization and Convergence ͑Wiley, New York, 1986͒.
  27. H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes ͑MIT Press, Cambridge, MA, 1984͒.
  28. ͓28͔ D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffu- sion Processes ͑Springer-Verlag, New York, 1979͒.
  29. C. J. Thompson, Mathematical Statistical Mechanics ͑Prince- ton University Press, Princeton, 1972͒.
  30. L. S. Liebovitch and J. M. Sullivan, Biophys. J. 52, 979 ͑1987͒.
  31. L. S. Liebovitch, J. Fischbarg, and J. P. Koniarek, J. Membr. Sci. 84, 37 ͑1987͒.
  32. ͓32͔ Z. J. Grzywna, L. S. Liebovitch, and Z. Siwy, J. Membr. Sci. 145, 253 ͑1998͒.
  33. S. J. Korn and R. Horn, Biophys. J. 54, 871 ͑1988͒.
  34. M. S. P. Sansom, F. G. Ball, C. J. Kerry, R. McGee, R. L. Ramsey, and P. N. Usherwood, Biophys. J. 56, 1229 ͑1989͒.
  35. D. Petracchi, C. Ascoli, M. Barbi, S. Chillemi, M. Pellegrini, and M. Pellegrino, J. Stat. Phys. 70, 393 ͑1993͒.
  36. J. Timmer and S. Klein, Phys. Rev. E 55, 3306 ͑1997͒.
  37. A. Fuliński, Z. Grzywna, I. Mellor, Z. Siwy, and P. N. R. Usherwood, Phys. Rev. E 58, 919 ͑1998͒.
  38. ͓38͔ Z. Siwy and A. Fuliński, Phys. Rev. Lett. 89, 158101 ͑2002͒.
  39. S. Mercik, K. Weron, and Z. Siwy, Phys. Rev. E 60, 7343 ͑1999͒.
  40. S. Mercik, Z. Siwy, and K. Weron, Physica A 276, 376 ͑2000͒.
  41. R. C. Tolman, The Principles of Statistical Mechanics ͑Oxford University Press, New York, 1938͒.
  42. J. R. Norris, Markov Chains ͑Cambridge University Press, Cambridge, England, 1999͒.
  43. M. Fukushima, Dirichlet Forms and Markov Processes ͑North-Holland, Amsterdam, 1980͒.