Practical Lattice-Based Digital Signature Schemes
2015, ACM Transactions on Embedded Computing Systems
https://doi.org/10.1145/2724713Abstract
Digital signatures are an important primitive for building secure systems and are used in most real-world security protocols. However, almost all popular signature schemes are either based on the factoring assumption (RSA) or the hardness of the discrete logarithm problem (DSA/ECDSA). In the case of classical cryptanalytic advances or progress on the development of quantum computers, the hardness of these closely related problems might be seriously weakened. A potential alternative approach is the construction of signature schemes based on the hardness of certain lattice problems that are assumed to be intractable by quantum computers. Due to significant research advancements in recent years, lattice-based schemes have now become practical and appear to be a very viable alternative to number-theoretic cryptography. In this article, we focus on recent developments and the current state of the art in lattice-based digital signatures and provide a comprehensive survey discussing signat...
References (101)
- Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. 2002. From Identification to Sig- natures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security. In EUROCRYPT. 418-433.
- Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. 2012. Tightly-Secure Sig- natures from Lossy Identification Schemes. In EUROCRYPT. 572-590.
- Shweta Agrawal, Dan Boneh, and Xavier Boyen. 2010. Efficient Lattice (H)IBE in the Standard Model. In EUROCRYPT. 553-572.
- Miklós Ajtai. 1996. Generating Hard Instances of Lattice Problems (Extended Abstract). In STOC. 99-108.
- Miklós Ajtai, Ravi Kumar, and D. Sivakumar. 2001. A Sieve Algorithm for the Shortest Lattice Vector Problem. In STOC. 601-610.
- Joël Alwen and Chris Peikert. 2011. Generating Shorter Bases for Hard Random Lattices. Theory Comput. Syst. 48, 3 (2011), 535-553.
- Aydin Aysu, Cameron Patterson, and Patrick Schaumont. 2013. Low-Cost and Area-Efficient FPGA Imple- mentations of Lattice-based Cryptography. In HOST. 81-86.
- Shi Bai and Steven D. Galbraith. 2014. An Improved Compression Technique for Signatures Based on Learn- ing with Errors. In CT-RSA. 28-47.
- Rachid El Bansarkhani and Johannes Buchmann. 2013. Improvement and Efficient Implementation of a Lattice-Based Signature Scheme. In Selected Areas in Cryptography. 48-67.
- Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In ACM CCS. 62-73.
- Richard E. Blahut. 2010. Fast Algorithms for Signal Processing. Cambridge University Press.
- Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional Encryption: Definitions and Challenges. In TCC. Vol. 6597.
- Dan Boneh and Mark Zhandry. 2013. Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. In CRYPTO (2). 361-379.
- Ahmad Boorghany and Rasool Jalili. 2014. Implementation and Comparison of Lattice-based Identification Protocols on Smart Cards and Microcontrollers. IACR Cryptology ePrint Archive 2014 (2014), 78.
- Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. 2014. On Constrained Implementation of Lattice-based Cryptographic Primitives and Schemes on Smart Cards. IACR Cryptology ePrint Archive 2014 (2014), 514.
- Xavier Boyen. 2010. Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure Short Signa- tures and More. In PKC. 499-517.
- Xavier Boyen. 2013. Attribute-Based Functional Encryption on Lattices. In TCC. 122-142.
- Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. 2013. Classical Hardness of Learning with Errors. In STOC. 575-584.
- Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas H ülsing, and Patrick Weiden. 2013. Dis- crete Ziggurat: A Time-Memory Trade-Off for Sampling from a Gaussian Distribution over the Integers. In Selected Areas in Cryptography. 402-417.
- Johannes Buchmann, Richard Lindner, Markus R ückert, and Michael Schneider. 2009. Post-Quantum Cryp- tography: Lattice Signatures. Computing 85, 1-2 (2009), 105-125.
- Jan Camenisch, Gregory Neven, and Markus R ückert. 2012. Fully Anonymous Attribute Tokens from Lat- tices. In SCN. 57-75.
- Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray C. C. Cheung, Derek Pao, and Ingrid Verbauwhede. 2014. High-speed Polynomial Multiplication Architecture for Ring-LWE and SHE Cryptosystems. IACR Cryptology ePrint Archive 2014 (2014), 646.
- Lo Sing Cheng, Ali Miri, and Tet Hin Yeap. 2005. Efficient FPGA implementation of FFT based multipliers. In Electrical and Computer Engineering, 2005. 1300-1303.
- Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. 2014. Efficient Software Implementation of Ring-LWE Encryption. IACR Cryptology ePrint Archive 2014 (2014), 725.
- James Cooley and John Tukey. 1965. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comp. 19, 90 (1965), 297-301.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algo- rithms (third edition ed.). The MIT Press.
- Özg ür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. 2013. The Fiat-Shamir Transformation in a Quantum World. In ASIACRYPT (2). 62-81.
- Whitfield Diffie and Martin E. Hellman. 1976. New directions in cryptography. IEEE Transactions on Infor- mation Theory 22, 6 (1976), 644-654.
- Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. 2003. Approximating CVP to Within Almost- Polynomial Factors is NP-Hard. Combinatorica 23, 2 (April 2003), 205-243.
- Benedikt Driessen, Axel Poschmann, and Christof Paar. 2008. Comparison of innovative signature algo- rithms for WSNs. In WISEC. 30-35.
- Léo Ducas. 2014. Accelerating Bliss: the geometry of ternary polynomials. IACR Cryptology ePrint Archive 2014 (2014), 874.
- Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. 2013. Lattice Signatures and Bi- modal Gaussians. In CRYPTO (1). 40-56. Full version: https://eprint.iacr.org/2013/383.pdf.
- Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. 2014. Efficient Identity-Based Encryption over NTRU Lattices. In ASIACRYPT. 22-41.
- Léo Ducas and Daniele Micciancio. 2014. Improved Short Lattice Signatures in the Standard Model. In CRYPTO. 335-352.
- Léo Ducas and Phong Q. Nguyen. 2012a. Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic. In ASIACRYPT. 415-432.
- Léo Ducas and Phong Q. Nguyen. 2012b. Learning a Zonotope and More: Cryptanalysis of NTRUSign Coun- termeasures. In ASIACRYPT. 433-450.
- Nagarjun C. Dwarakanath and Steven D. Galbraith. 2014. Sampling from discrete Gaussians for lattice- based cryptography on a constrained device. Appl. Algebra Eng. Commun. Comput. (2014), 159-180.
- Pavel Emeliyanenko. 2009. Efficient Multiplication of Polynomials on Graphics Hardware. In APPT. 134- 149. Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In CRYPTO. 186-194.
- Steven D. Galbraith. 2012. Mathematics of Public-Key Cryptography. Cambridge: Cambridge University Press. xiv. 452-459 pages.
- Craig Gentry. 2009a. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation. Stanford University. Craig Gentry. 2009b. Fully homomorphic encryption using ideal lattices. In STOC. 169-178.
- Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo. 2001. Cryptanalysis of the NTRU Signa- ture Scheme (NSS). In ASIACRYPT. 1-20.
- Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. 2008. Trapdoors For Hard Lattices And New Cryp- tographic Constructions. In STOC. 197-206.
- Craig Gentry and Michael Szydlo. 2002. Cryptanalysis of the Revised NTRU Signature Scheme. In EURO- CRYPT. 299-320.
- Oded Goldreich, Shafi Goldwasser, and Shai Halevi. 1996. Public-Key Cryptosystems from Lattice Reduction Problems. Electronic Colloquium on Computational Complexity (ECCC) 3, 56 (1996).
- Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A Digital Signature Scheme Secure Against Adaptive Chosen-message Attacks. SIAM J. Comput. 17, 2 (apr 1988), 281-308.
- Samuel Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. 2010. A Group Signature Scheme from Lattice Assumptions. In ASIACRYPT. 395-412.
- Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and Sorin A. Huss. 2012. On the Design of Hardware Building Blocks for Modern Lattice-Based Encryption Schemes. In CHES. 512-529.
- Tim G üneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. 2012. Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In CHES. 530-547.
- Tim G üneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. 2013. Software Speed Records for Lattice-Based Signatures. In PQCrypto. 67-82.
- Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang Shantz. 2004. Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs. In CHES. 119-132.
- Tamas Györfi, Octavian Cret, and Zalan Borsos. 2013. Implementing Modular FFTs in FPGAs -A Basic Block for Lattice-Based Cryptography. In DSD. 305-308.
- Bettina Helfrich. 1985. Algorithms to Construct Minkowski Reduced and Hermite Reduced Lattice Bases. Theor. Comput. Sci. 41, 2-3 (Dec. 1985), 125-139.
- Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William Whyte. 2003. NTRUSign: Digital Signatures Using the NTRU Lattice. In CT-RSA. 122-140.
- Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. 1998. NTRU: A Ring-Based Public Key Cryptosys- tem. In ANTS. 267-288.
- Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. 2001. NSS: An NTRU Lattice-Based Signature Scheme. In EUROCRYPT. 211-228.
- Abdel Alim Kamal and Amr M. Youssef. 2009. An FPGA implementation of the NTRUEncrypt cryptosystem. In ICM. 209-212.
- Anatoly A. Karatsuba and Yuri Petrovich Ofman. 1963. Multiplication of Multidigit Numbers on Automata. Soviet Physics Doklady 7 (1963), 595-596.
- Neal Koblitz. 1987. Elliptic Curve Cryptosystems. Math. Comp. (1987).
- Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis. In CRYPTO. 388-397.
- Fabien Laguillaumie, Adeline Langlois, Benoît Libert, and Damien Stehlé. 2013. Lattice-Based Group Sig- natures with Logarithmic Signature Size. In ASIACRYPT (2). 41-61.
- Adeline Langlois and Damien Stehlé. 2014. Worst-case to average-case reductions for module lattices. De- signs, Codes and Cryptography (2014).
- Richard Lindner and Chris Peikert. 2011. Better Key Sizes (and Attacks) for LWE-Based Encryption. In CT-RSA. 319-339.
- Vadim Lyubashevsky. 2009. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signa- tures. In ASIACRYPT. 598-616.
- Vadim Lyubashevsky. 2012. Lattice Signatures without Trapdoors. In EUROCRYPT. 738-755.
- Vadim Lyubashevsky and Daniele Micciancio. 2009. On Bounded Distance Decoding, Unique Shortest Vec- tors, and the Minimum Distance Problem. In CRYPTO. 577-594.
- Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. 2008. SWIFFT: A Modest Proposal for FFT Hashing. In FSE. 54-72.
- Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices and Learning with Errors over Rings. In EUROCRYPT. 1-23.
- Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013a. On Ideal Lattices and Learning with Errors over Rings. J. ACM 60, 6 (2013), 43.
- Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013b. A Toolkit for Ring-LWE Cryptography. In EUROCRYPT. 35-54.
- James H. McClellan. 1976. Hardware realization of a Fermat number transform. IEEE Transactions on Acoustics, Speech and Signal Processing 24, 3 (Jun 1976), 216-225.
- Carlos Aguilar Melchor, Xavier Boyen, Jean-Christophe Deneuville, and Philippe Gaborit. 2014. Sealing the Leak on Classical NTRU Signatures. In PQCrypto 2014. 1-21.
- Daniele Micciancio. 2007. Generalized Compact Knapsacks, Cyclic Lattices, and Efficient One-Way Func- tions. Comput. Complex. 16, 4 (Dec. 2007), 365-411.
- Daniele Micciancio. 2008. Efficient Reductions Among Lattice Problems. In SODA. 84-93.
- Daniele Micciancio and Petros Mol. 2011. Pseudorandom Knapsacks and the Sample Complexity of LWE Search-to-Decision Reductions. In CRYPTO. 465-484.
- Daniele Micciancio and Chris Peikert. 2012. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In EUROCRYPT. 700-718.
- Daniele Micciancio and Chris Peikert. 2013. Hardness of SIS and LWE with Small Parameters. In CRYPTO (1). 21-39.
- Daniele Micciancio and Oded Regev. 2004. Worst-Case to Average-Case Reductions Based on Gaussian Mea- sures. In FOCS. 372-381.
- Daniele Micciancio and Oded Regev. 2007. Worst-Case to Average-Case Reductions Based on Gaussian Mea- sures. SIAM J. Comput. 37, 1 (2007), 267-302.
- Victor S Miller. 1986. Use of Elliptic Curves in Cryptography. In CRYPTO. 417-426.
- Robert T. Moenck. 1976. Practical Fast Polynomial Multiplication. In SYMSACC. 136-148.
- Phong Q. Nguyen and Oded Regev. 2009. Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures. J. Cryptology 22, 2 (2009), 139-160.
- Henri Nussbaumer. 1980. Fast Fourier transform and convolution algorithms. Springer-Verlag.
- Tobias Oder, Thomas Pöppelmann, and Tim G üneysu. 2014. Beyond ECDSA and RSA: Lattice-based Digital Signatures on Constrained Devices. In DAC. 1-6.
- Marshall C. Pease. 1968. An Adaptation of the Fast Fourier Transform for Parallel Processing. J. ACM 15, 2 (April 1968), 252-264.
- Chris Peikert. 2008. Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem. Electronic Colloquium on Computational Complexity (ECCC) 15, 100 (2008).
- Chris Peikert. 2010. An Efficient and Parallel Gaussian Sampler for Lattices. In CRYPTO. 80-97.
- John M Pollard. 1971. The Fast Fourier Transform in a Finite Field. Math. Comp. 25, 114 (1971), 365-374.
- Thomas Pöppelmann, Léo Ducas, and Tim G üneysu. 2014. Enhanced Lattice-Based Signatures on Recon- figurable Hardware. In CHES. 353-370. Full version: https://eprint.iacr.org/2014/254.pdf.
- Thomas Pöppelmann and Tim G üneysu. 2012. Towards Efficient Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware. In LATINCRYPT. 139-158.
- Thomas Pöppelmann and Tim G üneysu. 2013. Towards Practical Lattice-Based Public-Key Encryption on Reconfigurable Hardware. In Selected Areas in Cryptography. 68-85.
- Thomas Pöppelmann and Tim G üneysu. 2014. Area Optimization of Lightweight Lattice-Based Encryption on Reconfigurable Hardware. In ISCAS. 2796-2799.
- Oded Regev. 2005. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In STOC. 84-93.
- Oded Regev. 2009. On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56, 6 (2009).
- Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede. 2014. Compact and Side Channel Secure Discrete Gaussian Sampling. IACR Cryptology ePrint Archive 2014 (2014), 591.
- Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede. 2014. Compact Hardware Implementation of Ring-LWE Cryptosystems. In CHES. 371-391.
- Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. 2013. High Precision Discrete Gaussian Sampling on FPGAs. In Selected Areas in Cryptography. 1-39.
- Markus R ückert and Michael Schneider. 2010. Estimating the Security of Lattice-based Cryptosystems. IACR Cryptology ePrint Archive 2010 (2010), 137.
- Claus-Peter Schnorr. 1989. Efficient Identification and Signatures for Smart Cards. In CRYPTO. 239-252.
- Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997), 1484-1509.
- Patrick Weiden, Andreas H ülsing, Daniel Cabarcas, and Johannes Buchmann. 2013. Instantiating Treeless Signature Schemes. IACR Cryptology ePrint Archive 2013 (2013), 65.
- Franz Winkler. 1996. Polynomial Algorithms in Computer Algebra (Texts and Monographs in Symbolic Com- putation) (1 ed.). Springer.