Academia.eduAcademia.edu

Outline

One-Dimensional Microstructure Dynamics

2009, Lecture Notes in Applied and Computational Mechanics

https://doi.org/10.1007/978-3-642-00911-2_3

Abstract

Dispersive wave propagation in solids with microstructure is discussed in the small-strain approximation and in the one-dimensional setting. It is shown that the generalizations of wave equation based on continualizations of discrete systems as well as on homogenization methods can be recovered in the framework of the internal variable theory in the case of non-dissipative processes.

References (19)

  1. Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models -linear analysis. Arch. Appl. Mech. 72, 171-188 (2002)
  2. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured ma- terials and dispersion. Phil. Mag. 85, 4127-4141 (2005)
  3. Engelbrecht, J., Braun, M.: Nonlinear waves in nonlocal media. Appl. Mech. Rev. 51, 475-488 (1998)
  4. Engelbrecht, J., Cermelli, P., Pastrone, F.: Wave hierarchy in microstructured solids. In: Maugin, G.A. (ed.) Geometry, Continua and Microstructure, pp. 99-111. Hermann Publ., Paris (1999)
  5. Fish, J., Chen, W., Nagai, G.: Non-local dispersive model for wave propagation in hetero- geneous media: one-dimensional case. Int. J. Numer. Meth. Engng. 54, 331-346 (2002)
  6. Kunin, I.A.: Theory of Microstructured Elastic Media, Nauka, Moscow (1975) (in Rus- sian)
  7. Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermo- dyn. 15, 173-192 (1990)
  8. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)
  9. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)
  10. Maugin, G.A.: Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechan- ics. J. Elasticity 71, 81-103 (2003)
  11. Maugin, G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75, 723-738 (2006)
  12. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 19, 217-249 (1994)
  13. Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure-part 1: generic formulation. Eur. J. Mech. A/Solids 21, 555-572 (2002)
  14. Metrikine, A.V.: On causality of the gradient elasticity models. J. Sound Vibr. 297, 727- 742 (2006)
  15. Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51-78 (1964)
  16. Mühlhaus, H.B., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Struct. 33, 2841-2858 (1996)
  17. Santosa, F., Symes, W.W.: A dispersive effective medium for wave propagation in peri- odic composites. SIAM J. Appl. Math. 51, 984-1005 (1991)
  18. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of free- dom. J. Non-Equilib. Thermodyn. 33, 235-254 (2008)
  19. Wang, Z.-P., Sun, C.T.: Modeling micro-inertia in heterogeneous materials under dy- namic loading. Wave Motion 36, 473-485 (2002)