3D visual data mining—goals and experiences
2003, Computational Statistics & Data Analysis
Abstract
The visual exploration of large databases raises a number of unresolved inference problems and calls for new interaction patterns between multiple disciplines-both at the conceptual and technical level. We present an approach that is based on the interaction of four disciplines: database systems, statistical analyses, perceptual and cognitive psychology, and scientific visualization. At the conceptual level we offer perceptual and cognitive insights to guide the information visualization process. We then choose cluster surfaces to exemplify the data mining process, to discuss the tasks involved, and to work out the interaction patterns.
References (35)
- A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: building histograms without look- ing at data. In Proceedings of the ACM SIGMOD 1999 International Conference on Man- agement of Data, June, Philadephia, Pennsylvania, pages 181-192, 1999.
- S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree : An Index Structure for High- Dimensional Data. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 28-39. Morgan Kaufmann, 1996.
- B. Blohsfeld, D. Korus, and B. Seeger. A Comparison of Selectivity Estimators for Range Queries on Metric Attributes. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, Proceedings ACM SIGMOD 1999 International Conference on Management of Data, June, Philadephia, Pennsylvania, USA, pages 239-250. ACM Press, 1999.
- A. Buja, D. F. Swayne, and D. Cook. Interactive high-dimensional data visualization. Journal of Computational and Graphical Statistics, Vol. 5(No. 1):78-99, 1996.
- M. P. Consens and A. O. Mendelzon. Hy+: A Hygraph-based Query and Visualization System. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., May 26-28, 1993, pages 511-516. ACM Press, 1993.
- G. C. Van den Eijkel, J. C. A. Van der Lubbe, and E. Backer. A Modulated Parzen-Windows Approach for Probability Density Estimation. In IDA, 1997.
- L. Devroy and L. Gyorfi. Nonparametric Density Estimation. Jon Wiley & Sons, 1984.
- M. Farmen and J. S. Marron. An Assesment of Finite Sample Performace of Adaptive Meth- ods inDensity Estimation. In Computational Statistics and Data Analysis, 1998.
- C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Statistical Inference and Data Mining. Communications of the ACM, 39(11), November 1996.
- A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In B. Yormark, editor, SIGMOD'84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 47-57. ACM Press, 1984.
- A. Henrich. The LSD h -Tree: An Access Structure for Feature Vectors. In Proceedings of the Fourteenth International Conference on Data Engineering, February 23-27, 1998, Orlando, Florida, USA, pages 362-369. IEEE Computer Society, 1998.
- R. Jackendoff. The architecture of the linguistic-spatial interface. In P. Bloom, M. A. Pe- terson, L. Nadel, and M. F. Garrett, editors, Language and Space, pages 1-30. MIT Press, 1996.
- N. Katayama and S. Satoh. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. In J. Peckham, editor, Proceedings ACM SIGMOD 1997 International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 369- 380. ACM Press, 1997.
- V. Katkovnik and I. Shmulevich. Nonparametric Density Estimation with Adaptive Vary- ing Window Size. In Conference on Image and Signal Processing for Remote Sensing VI, European Symposium on Remote Sensing, Barcelona, Spain, September 25-29, 2000.
- D. A. Keim. Visual data mining. tutorial notes, Athens, Greece 1997.
- D. A. Keim and H.-P. Kriegel. Visdb: A system for visualizing large databases. In M. J. Carey and D. A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, 1995, page 482. ACM Press, 1995.
- J. Lee, D. Kim, and C. Chung. Multi-dimensional Selectivity Estimation Using Compressed Histogram Information. In A. Delis and C. Faloutsos and S. Ghandeharizadeh, editor, Pro- ceedings of the ACM SIGMOD 1999 International Conference on Management of Data, June, Philadephia, Pennsylvania, USA, pages 205-214. ACM Press, 1999.
- W. Lorensen and H. Cline. Marchine cubes: A high resolution 3d surface construction algorithm, 1987.
- A. Mažeika, M. Böhlen, and P. Mylov. Density Surfaces for Immersive Explorative Data Analyses. Proceedings of the Workshop on Visual Data Mining, in conjunction with Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001.
- H. R. Nagel, E. Granum, and P. Musaeus. Methods for Visual Mining of Data in Virtual Reality. Proceedings of the International Workshop on Visual Data Mining, in conjunction with ECML/PKDD2001 -2th European Conference on Machine Learning (ECML'01) and 5th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'01), 2001.
- J. T. Robinson. The K-D-B-Tree: A Search Structure For Large Multidimensional Dynamic Indexes. In Y. Edmund Lien, editor, Proceedings of the 1981 ACM SIGMOD International Conference on Management of Data, Ann Arbor, Michigan, April 29 -May 1, 1981, pages 10-18. ACM Press, 1981.
- S. Sain. Adaptive Kernel Density Estimation, 1994.
- S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of Continuously Moving Objects. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, volume 29, pages 331-342. ACM, 2000.
- N. Sawant, C. Scharver, J. Leigh, A. Johnson, G. Reinhart, E. Creel, S. Batchu, S. Bailey, and R. Grossman. The Tele-Immersive Data Explorer: A Distributed Architecture for Collabora- tive Interactive Visualization of Large Data-sets. In Proceedings of the Fourth International Immersive Projection Technology Workshop, Ames, June 2000.
- B. J. Scholl. Objects and attention: the state of the art. Cognition, 80:1-46, 2001.
- D. W. Scot. Multivariate Density Estimation. Wiley & Sons, New York, 1992.
- H. Shen and C. Johnson. Sweeping Simplicies: A Fast Isosurface Extraction Algorithm for Unstructured Grids. In Proceedings of Visualization 1995, pages 143-150, Atlanta, GA, October 1995. IEEE Computer Society Press.
- B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, 1986.
- C. C. Taylor. Bootstrap Choice of the Smoothing Parameter in Kernel Density Estimation. Biometrika, 76(4):705-12, 1989.
- S. Ullman. High-level Vision. Object Recognition and Visual Cognition. Cambridge, Mas- sachusetts, The MIT Press, 1996.
- M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall, London, 1985.
- C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publishers, 2000.
- E. J. Wegman and Q. Luo. Visualizing Densities. Technical Report Report No. 100, Center for Computational Statistics, George Mason University, 1994.
- D. A. White and R. Jain. Similarity Indexing with the SS-tree. In S. Y. W. Su, editor, Proceedings of the Twelfth International Conference on Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana, pages 516-523. IEEE Computer Society, 1996.
- J. Wilhelms and A. Van Gelder. Octrees for Faster Isosurface Generation. ACM Transactions on Graphics, 11(3):201-227, 1992.