Academia.eduAcademia.edu

Outline

Capacity Recovery Effect in Commercial LiFePO4 / Graphite Cells

2020, Journal of The Electrochemical Society

Abstract

We report a significant capacity recovery effect of more than 10% after continuous shallow cycling of commercial LiFePO4/ Graphite cells. In a previous study on a LiFePO4/Graphite cell, we observed that capacity losses were more severe with shallow cycles than with full cycles. Herein, the effects of shallow cycling on aging are investigated in detail using three different LiFePO4/ Graphite cell models, two 26650-type and one 18650-type. It is shown that a large portion of the capacity losses that occur with shallow cycling can be recovered by holding the cells at 0% or 100% state of charge. Differential voltage analysis and post-mortem experiments suggest that these capacity losses are caused by strongly non-uniform lithium distributions in the electrodes. Hypothetical mechanisms are presented and discussed that could lead to such non-uniform distributions of lithium.

FAQs

sparkles

AI

What leads to reversible capacity losses in LiFePO4/Graphite cells during shallow cycling?add

The study reveals that non-uniform lithium distribution due to shallow cycling results in reversible capacity losses of up to 20%, exceeding typical losses attributed to anode overhang areas.

How does mean state of charge affect capacity loss in LiFePO4/Graphite cells?add

Research demonstrates that cycling between 40% and 60% SOC incurs higher capacity losses compared to lower or higher SOC ranges, with losses peaking at 10-21% after 1000 FEC.

Which recuperation strategies are most effective for restoring capacity in aged cells?add

Holding cells at 2 V or cycling between 2 V and 3.6 V effectively recovers around 89% of lost capacity after 35 days, outperforming other tested methods.

How does temperature influence the recuperation of LiFePO4/Graphite cells?add

Tests indicate that increasing temperature to 45 °C accelerates recuperation, achieving 97% relative capacity recovery in just 7 days, compared to longer durations at 25 °C.

What post-mortem findings confirm lithium distribution variations in cycled cells?add

Post-mortem analysis identifies distinct color stripes indicating varying lithium concentrations, with higher lithium accumulation near the edges of cycled electrodes, supporting claims of non-uniform distribution.

References (40)

  1. J. Wilhelm, S. Seidlmayer, P. Keil, J. Schuster, A. Kriele, R. Gilles, and A. Jossen, J. Power Sources, 365, 327 (2017).
  2. M. Lewerenz, J. Münnix, J. Schmalstieg, S. Käbitz, M. Knips, and D. U. Sauer, J. Power Sources, 345, 254 (2017).
  3. M. Lewerenz, G. Fuchs, L. Becker, and D. U. Sauer, Journal of Energy Storage, 18, 149 (2018).
  4. M. Lewerenz, P. Dechent, and D. U. Sauer, Journal of Energy Storage, 21, 680 (2019).
  5. M. Naumann, M. Schimpe, P. Keil, H. C. Hesse, and A. Jossen, Journal of Energy Storage, 17, 153 (2018).
  6. M. Naumann, F. B. Spingler, and A. Jossen, J. Power. Sources., 451, 227 (2020).
  7. K. Rumpf, M. Naumann, and A. Jossen, Journal of Energy Storage, 14, 224 (2017).
  8. E. Sarasketa-Zabala, I. Gandiaga, E. Martinez-Laserna, L. M. Rodriguez-Martinez, and I. Villarreal, J. Power Sources, 275, 573 (2015).
  9. P. Keil and A. Jossen, Journal of Energy Storage, 6, 125 (2016).
  10. M. Petzl and M. A. Danzer, J. Power Sources, 254, 80 (2014).
  11. C. von Lüders, V. Zinth, S. V. Erhard, P. J. Osswald, M. Hofmann, R. Gilles, and A. Jossen, J. Power Sources, 342, 17 (2017).
  12. S. Schindler, M. Bauer, M. Petzl, and M. A. Danzer, J. Power Sources, 304, 170 (2016).
  13. I. D. Campbell, M. Marzook, M. Marinescu, and G. J. Offer, J. Electrochem. Soc., 166, A725 (2019).
  14. M. C. Smart, B. V. Ratnakumar, M. C. Smart, and B. V. Ratnakumar, J. Electrochem. Soc., 158, A379 (2011).
  15. M. C. Smart, B. V. Ratnakumar, L. Wbitcanack, K. Chin, M. Rodriguez, and S. Surampudi, Seventeenth Annual Battery Conference on Applications and Advances (2002).
  16. J. Dahn, Phys. Rev. B, 44, 9170 (1991).
  17. T. Ohzuku, J. Electrochem. Soc., 140, 2490 (1993).
  18. M. Dubarry and B. Y. Liaw, J. Power Sources, 194, 541 (2009).
  19. S. Schindler and M. A. Danzer, J. Power Sources, 343, 226 (2017).
  20. M. Lewerenz, A. Marongiu, A. Warnecke, and D. U. Sauer, J. Power Sources, 368, 57 (2017).
  21. D. Guerard and A. Herold, Carbon, 13, 337 (1975).
  22. V. A. Nalimova, D. Guérard, M. Lelaurain, and V. Fateev, Carbon, 33, 177 (1995).
  23. S. J. Harris, A. Timmons, D. R. Baker, and C. Monroe, Chem. Phys. Lett., 485, 265 (2010).
  24. M. Petzl, M. Kasper, and M. A. Danzer, J. Power Sources, 275, 799 (2015).
  25. D. Burow, K. Sergeeva, S. Calles, K. Schorb, A. Börger, C. Roth, and P. Heitjans, J. Power Sources, 307, 806 (2016).
  26. Q. Q. Liu, D. J. Xiong, R. Petibon, C. Y. Du, and J. R. Dahn, J. Electrochem. Soc., 163, A3010 (2016).
  27. J. Wandt, P. Jakes, J. Granwehr, R.-A. Eichel, and H. A. Gasteiger, Mater. Today, 21, 231 (2017).
  28. Y. Zhao, Y. Patel, T. Zhang, and G. J. Offer, J. Electrochem. Soc., 165, A3169 (2018).
  29. M. Klett, R. Eriksson, J. Groot, P. Svens, K. Ciosek Högström, R. W. Lindström, H. Berg, T. Gustafson, G. Lindbergh, and K. Edström, J. Power Sources, 257, 126 (2014).
  30. T. C. Bach, S. F. Schuster, E. Fleder, J. Müller, M. J. Brand, H. Lorrmann, A. Jossen, and G. Sextl, Journal of Energy Storage, 5, 212 (2016).
  31. P. J. Osswald, S. V. Erhard, A. Noel, P. Keil, F. M. Kindermann, H. Hoster, and A. Jossen, J. Power Sources, 314, 93 (2016).
  32. P. J. Osswald, S. V. Erhard, J. Wilhelm, H. E. Hoster, and A. Jossen, J. Electrochem. Soc., 162, A2099 (2015).
  33. J. Cannarella and C. B. Arnold, J. Electrochem. Soc., 162, A1365 (2015).
  34. M. Tang, P. Albertus, and J. Newman, J. Electrochem. Soc., 156, A390 (2009).
  35. V. V. Viswanathan, D. Choi, D. Wang, W. Xu, S. Towne, R. E. Williford, J.-G. Zhang, J. Liu, and Z. Yang, J. Power Sources, 195, 3720 (2010).
  36. Y. Reynier, R. Yazami, and B. Fultz, J. Power Sources, 119-121, 850 (2003).
  37. S. J. Bazinski and X. Wang, J. Electrochem. Soc., 161, A168 (2014).
  38. S. J. Drake, D. A. Wetz, J. K. Ostanek, S. P. Miller, J. M. Heinzel, and A. Jain, J. Power Sources, 252, 298 (2014).
  39. Y. Zhu and C. Wang, J. Power Sources, 196, 1442 (2011).
  40. A. Zeh, M. Müller, M. Naumann, H. Hesse, A. Jossen, and R. Witzmann, Batteries, 2, 29 (2016).