Academia.eduAcademia.edu

Outline

An extension of quasi-hyperbolic discounting to continuous time

https://doi.org/10.1016/J.GEB.2014.11.003

Abstract

Two-Stage Exponential (TSE) discounting, the model developed here, generalises exponential discounting in a parsimonious way. It can be seen as an extension of Quasi-Hyperbolic discounting to continuous time. A TSE discounter has a constant rate of time preference before and after some threshold time; the switch point. If the switch point is expressed in calendar time, TSE discounting captures time consistent behaviour. If it is expressed in waiting time, TSE discounting captures time invariant behaviour. We provide preference foundations for all cases, showing how the switch point is derived endogenously from behaviour. We apply each case to Rubinstein’s infinite-horizon, alternating-offers bargaining model.

References (38)

  1. Abdellaoui, Mohammed, Attema, Arthur E., Bleichrodt, Han, 2010. Intertemporal tradeoffs for gains and losses: an experimental measurement of discounted utility. Econ. J. 120, 845-866.
  2. Abdellauoi, Mohammed, 2013. Sign-dependence in intertemporal choice. J. Risk Uncertainty 47 (3), 225-253.
  3. Aczel, Janos, Skof, Fulvia, 2007. Local Pexider and Cauchy equations. Aequ. Math. 73, 311-320.
  4. Akin, Zafer, 2007. Time inconsistency and learning in bargaining games. Int. Game Theory Rev. 36, 275-299.
  5. Asheim, Geir B., 1997. Individual and collective time-consistency. Rev. Econ. Stud. 64, 427-443.
  6. Attema, Arthur E., Bleichrodt, Han, Rohde, Kirsten I.M., Wakker, Peter P., 2010. Time trade-off sequences for analyzing discounting and time inconsistency. Manage. Sci. 56 (11), 2015-2030.
  7. Baillon, Aurelien, Driesen, Bram, Wakker, Peter P., 2012. Relative concave utility for risk and ambiguity. Games Econ. Behav. 75, 481-489.
  8. Barro, Robert, 1999. Laibson meets Ramsey in the neoclassical growth model. Quart. J. Econ. 114, 1125-1152.
  9. Benoit, Jean-Pierre, Ok, Efe A., 2007. Delay aversion. Theoretical Econ. 2, 71-113.
  10. Blackorby, Charles, Nissen, David, Primont, Daniel, Russell, R. Robert, 1973. Intertemporal decision making. Rev. Econ. Stud. 40 (2), 239-248.
  11. Bleichrodt, Han, Kothiyal, Amit, Prelec, Drazen, Wakker, Peter, 2013. Compound invariance implies prospect theory for simple prospects. J. Math. Psychol. 57 (3-4), 67-77.
  12. Debreu, Gerard, 1964. Continuity properties of Paretian utility. Int. Econ. Rev. 5, 285-293.
  13. Diecidue, Enrico, Schmidt, Ulrich, Zank, Horst, 2009. Parametric weighting functions. J. Econ. Theory 144 (3), 1102-1118.
  14. Epper, T., Fehr-Duda, H., Bruhin, A., 2011. Viewing the future through a warped lens: why uncertainty generates hyperbolic discounting. J. Risk Uncer- tainty 43, 169-203.
  15. Fishburn, Peter C., Rubinstein, Ariel, 1982. Time preference. Int. Econ. Rev. 23, 677-694.
  16. Halevy, Yoram, 2012. Time consistency: stationarity and time invariance. Working paper, The University of British Columbia.
  17. Hammond, Peter J., 1976. Changing tastes and coherent dynamic choice. Rev. Econ. Stud. 43, 159-173.
  18. Harris, Christopher, Laibson, David, 2013. Instantaneous gratification. Quart. J. Econ. 128 (1), 205-248.
  19. Hayashi, T., 2003. Quasi-stationary cardinal utility and present bias. J. Econ. Theory 112, 343-352.
  20. Hey, John D., Lotito, Gianna, 2009. Naive, resolute or sophisticated? A study of dynamic decision making. J. Risk Uncertainty 38, 1-25.
  21. Hey, John D., Panaccione, Luca, 2011. Dynamic decision making: what do people do? J. Risk Uncertainty 42, 85-123.
  22. Jamison, Dean T., Jamison, Julian, 2011. Characterizing the amount and speed of discounting procedures. J. Benefit-Cost Anal. 2 (2). Article 1.
  23. Köbberling, Veronika, Wakker, Peter P., 2003. Preference foundations for nonexpected utility: a generalized and simplified technique. Math. Operations Res. 28, 395-423.
  24. Kodritsch, Sebastian, 2012. On time-inconsistency in bargaining. Working paper, London School of Economics. Koopmans, Tjalling C., 1960. Stationary ordinal utility and impatience. Econometrica 28, 287-309.
  25. Koopmans, Tjalling C., 1972. Representation of preference orderings with independent components of consumption, and representations of preference or- derings over time. In: McGuire, C.B., Radner, Roy (Eds.), Decision and Organization: A Volume in a Honor of Jacob Marschak. North-Holland, Amsterdam, pp. 57-100.
  26. Laibson, David, 1997. Golden eggs and hyperbolic discounting. Quart. J. Econ. 112 (2), 443-477.
  27. Luttmer, Erzo, Mariotti, Thomas, 2003. Subjective discounting in an exchange economy. J. Polit. Economy 111 (5), 959-989.
  28. Machina, Mark J., 1989. Dynamic consistency and non-expected utility models of choice under uncertainty. J. Econ. Lit. 27, 1622-1668.
  29. McClennen, Edward F., 1990. Rationality and Dynamic Choice: Foundational Explorations. Cambridge University Press, Cambridge.
  30. Montiel Olea, Jose Luis, Strzalecki, Tomasz, 2014. Axiomatization and measurement of quasi-hyperbolic discounting. Quart. J. Econ. 129, 1449-1499.
  31. Noor, Jawwad, 2011. Intertemporal choice and the magnitude effect. Games Econ. Behav. 72, 255-270.
  32. O'Donoghue, Ted, Rabin, Matthew, 2001. Choice and procrastination. Quart. J. Econ. 116, 121-160.
  33. Ok, Efe A., Masatlioglu, Yusufcan, 2007. A theory of (relative) discounting. J. Econ. Theory 137, 214-245.
  34. Phelps, E., Pollak, R., 1968. On second-best national saving and game-equilibrium growth. Rev. Econ. Stud. 35 (2), 185-199.
  35. Rubinstein, Ariel, 1982. Perfect equilibrium in a bargaining model. Econometrica 50, 97-110.
  36. Shefrin, Hersh, 1998. Changing utility functions. In: Barbera, Hammond, Shell (Eds.), Handbook of Utility Theory, Volume 1: Principles. Kluwer Academic Publishers.
  37. Takeuchi, K., 2011. Non-parametric test of time consistency: present bias and future bias. Games Econ. Behav. 71, 456-478.
  38. Thaler, Richard H., 1981. Some empirical evidence of dynamic inconsistency. Econ. Letters 8, 201-207.