Academia.eduAcademia.edu

Outline

Note on linear relations in {\'e}tale $K$-theory of curves

2019, arXiv (Cornell University)

Abstract

We also give some examples of curves and their Jacobians. Finally, we prove the dynamical version of the local to global principle for {é}tale $K$-theory of a curve. The dynamical local to global principle for the groups of Mordell-Weil type has recently been considered by S. Bara{ń}czuk in \\cite{b17}. We show that all our results remain valid for Quillen $K$-theory of ${\\cal X}$ if the Bass and Quillen-Lichtenbaum conjectures hold true for ${\\cal X}.$

References (22)

  1. G. Banaszak, W. Gajda, and P. Krasoń, On Galois cohomology of some p-adic representa- tions and étale K-theory of curves, Contemporary Math. AMS 241 (1999), 23-44.
  2. G. Banaszak, W. Gajda, P. Krasoń, On reduction map for étale K-theory of curves, Homol- ogy, Homotopy and Applications 7 (3), Proceedings of Victor's Snaith 60-th Birthday Conference, (2005), 1-10.
  3. G. Banaszak, W. Gajda, P. Krasoń, Support problem for the intermediate Jacobians of l-adic representations, Journal of Number Theory 100 (1) (2003), 133-168.
  4. G. Banaszak, P. Krasoń, On a local to global principle in étale K-groups of curves, Journal of K-theory and its Applications to Algebra Geometry and Topology,12, (2013), pp.183-201.
  5. S. Barańczuk ,On a dynamical local-global principle in Mordell-Weil type groups, Expo. Math. 35, No. 2, 206-211 (2017).
  6. S. Barańczuk, K. Górnisiewicz ,On reduction maps for the étale and Quillen K-theory of curves and applications, J. K-theory Vol. 2, Issue 1, 2008 , pp. 103-122.
  7. W. Bondarewicz, P. Krasoń, On a reduction map for Drinfeld modules, preprint 2018, arXiv:1811.05631.
  8. A. Brumer, A. Pacetti, C. Poor, G. Tornaria, J. Voight, D. S.Yuen, On paramodularity of typical abelian surfaces, arXiv: 1805.10873v.2, Aug. 2018.
  9. D. A. Cox, Primes of the form x 2 + ny 2 , John Wiley and sons 1989.
  10. C-L. Chai, F. Oort, Abelian varieties isogenous to a Jacobian, Annals of Mathematics 176 (2012), 589-635.
  11. W. Dwyer, E. Friedlander, Algebraic and étale K-theory, Trans. Amer. Math. Soc. 292 (1985), 247-280.
  12. T. Ekedahl, J-P. Serre, Examples of algebraic curves with totally split Jacobian, C. R. Acad. Sci., Paris, Sr. I 317, No. 5, 509-513 (1993).
  13. Y. Flicker, P. Krasoń, Multiplicative relations of points on algebraic groups. , Bull. Pol. Acad. Sci., Math. 65, No. 2, 125-138 (2017).
  14. T. Hayashida, M. Nishi, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan, vol. 17, no.1, (1965) pp. 1-16.
  15. U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), 207-245.
  16. P. Jossen, A. Perucca, A counterexample to the local-global principle of linear dependence for abelian varieties., C. R., Math., Acad. Sci. Paris 348, No. 1-2, pp. 9-10 (2010).
  17. J. S. Milne, Étale cohomology, Princeton University Press, 5, Princeton, New jersey,(1980).
  18. F. Oort, K. Ueno Principally polarized abelian varieties of dimension two or three are Jacobian varieties, Journ. Fac. Sc. Univ. Tokyo, Sec. IA 20 (1973), 377 -381.
  19. K. A. Ribet, Kummer theory on extensions of abelian varieties by tori, Duke Math. J. 46 (1979), pp. 745-761.
  20. J.-P. Serre, Sur les groupes de congruence des variétes abéliennes II, Izv. Akad. SSSR Ser. Mat., 1971, vol. 35, Issue 4.
  21. J. Tate, p-divisible groups, Proceedings of the Conference on local Fields, Springer-Verlag,1968.
  22. A. Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Göttingen, Math.-Phys. Kl. 1957, 33 53.