Academia.eduAcademia.edu

Outline

Modeling bursts and heavy tails in human dynamics

2006, Physical Review E

Abstract

The dynamics of many social, technological and economic phenomena are driven by individual human actions, turning the quantitative understanding of human behavior into a central question of modern science. Current models of human dynamics, used from risk assessment to communications, assume that human actions are randomly distributed in time and thus well approximated by Poisson processes. Here we provide direct evidence that for five human activity patterns, such as email and letter based communications, web browsing, library visits and stock trading, the timing of individual human actions follow non-Poisson statistics, characterized by bursts of rapidly occurring events separated by long periods of inactivity. We show that the bursty nature of human behavior is a consequence of a decision based queuing process: when individuals execute tasks based on some perceived priority, the timing of the tasks will be heavy tailed, most tasks being rapidly executed, while a few experiencing very long waiting times. In contrast, priority blind execution is well approximated by uniform interevent statistics. We discuss two queueing models that capture human activity. The first model assumes that there are no limitations on the number of tasks an individual can hadle at any time, predicting that the waiting time of the individual tasks follow a heavy tailed distribution P (τw) ∼ τ −α w with α = 3/2. The second model imposes limitations on the queue length, resulting in a heavy tailed waiting time distribution characterized by α = 1. We provide empirical evidence supporting the relevance of these two models to human activity patterns, showing that while emails, web browsing and library visitation display α = 1, the surface mail based communication belongs to the α = 3/2 universality class. Finally, we discuss possible extension of the proposed queueing models and outline some future challenges in exploring the statistical mechanisms of human dynamics. These findings have important implications not only for our quantitative understanding of human activity patterns, but also for resource management and service allocation in both communications and retail.

References (61)

  1. W. Feller, An introduction to probability theory and its applica- tions Vol. 2 (Wiley, 2nd Edition, New York, 1971).
  2. F. A. Haight, Handbook of the Poisson Distribution (Wiley, New York, 1967).
  3. A. K. Erlang, Nyt. Tidsskrift for Matematik B 20 1909; Elek- trotkeknikeren 13 (1917).
  4. H. R. Anderson, Fixed Broadband Wireless System Design (Wi- ley, New York, 2003).
  5. A.-L. Barabási, Nature 207, 435 (2005).
  6. J. G. Oliveira and A.-L. Barabási, Nature (in press).
  7. Z. Dezső, E. Almaas, A. Lukács, B. Rácz, I. Szakadát and A.-L. Barabási. physics/0505087.
  8. A. Vázquez, physics/0506126.
  9. H. E. Stanley, Introduction to phase transitions and critical phe- nomena (Oxford Univ. Press, Oxford, 1987).
  10. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
  11. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From biological nets to the Internet and the WWW, Oxford Univ. Press, Oxford, 2003).
  12. R. Pastor-Satorras and A. Vespignani, Evolution and structure of the Internet: A Statistical Physics Approach (Cambridge Univ. Press, Cambridge, 2004).
  13. S.-D. Poisson, Recherches sur la probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilités. (Bachelier, Paris, 1837).
  14. P. Reynolds, Call Center Staffing (The Call Center School Press, Lebanon, TN, 2003).
  15. J. H. Greene, Production and Inventory Control Handbook (McGraw-Hill, New York, 3 ed, 1997).
  16. C. Dewes, A. Wichmann, and A. Feldman, An Analysis of In- ternet Chat Systems, Proc. 2003 ACM SIGCOMM Conf. on In- ternet Measurement (IMC-03), ACM Press, New York, 2003).
  17. S. D. Kleban and S. H. Clearwater, Hierarchical Dynamics, In- terarrival Times and Performance, Proc. of SC'03, November 15-21, 2003, Phonenix, AZ, USA.
  18. V. Paxson and S. Floyd, Wide-Area Traffic: The Failure of Pois- son Modeling, IEEE/ACM Tansactions in Networking 3, 226 (1995).
  19. F. Mainardi, M. Raberto, R. Gorenflo and E. Scalas, cond-mat/0006454
  20. M. Raberto, E. Scalas, F. Mainardi, cond-mat/0203596
  21. V. Plerou, P. Gopikirshnan, L. A. N. Amara, X. Gabaix, and H. E. Stanley, Phys. Rev. E 62, R3023 (2000).
  22. J. Masoliver, M. Montero and G. H. Weiss, Phys. Rev. E 67, 021112 (2003).
  23. T. Henderson and S. Nhatti, Modelling user behavior in net- worked games, Proc. ACM Multimedia 2001, Ottawa, Canada, 212-220, 30 September-5 October (2001).
  24. J.-P. Eckmann, E. Moses and D. Sergi, Proc. Nat. Acad. Sci. USA 101, 14333 (2004).
  25. H. Ebel, L.-I. Mielsch, and S. Bornholdt, Phys. Rev. E 66, R35103 (2002).
  26. U. Harder and M. Paczuski, cs.PF/0412027.
  27. B. Rácz and A. Lukács, High density compression of log files, Data compression conference, IEEE Computer Society Press (2004).
  28. Freud Museum, London, http://www.freud.org.uk/.
  29. J. W. Cohen, The Single Server Queue (North Holland, Amster- dam, 1969).
  30. D. Gross and C. M. Harris, Fundamentals of queueing theory (Wiley, New York, 1998).
  31. M. Crovella and Bestavros, IEEE/ACM Trans. Netw. 5, 835 (1997).
  32. M. Mitzenmacher, Internet Mathematics 1, 226-251 (2004).
  33. G. A. Miller, Psychological Review, 63, 8197 (1956).
  34. A. Baddeley, Psychological Bulletin, 101, 353 (1994); ibid 101, 668 (1994).
  35. A. Cobham, J. Oper. Res. Soc. Amer. 2, 70 (1954).
  36. J. Abate, Queueing Systems 25, 173 (1997).
  37. S. Redner, A guide to first-passage processes (Cambridge Uni- versity Press, New York, 2001).
  38. Diffusion and reactions in fractals and disordered systems, Ed- itors D. Ben-Avraham and S. Havlin (Cambridge University Press, Cambridge, 2000).
  39. H. Jeong, Z. Néda, and A.-L. Barabási, Europhy. Lett. 61, 567 (2003).
  40. A.-L. Barabási and R. Albert, Science 286, 509 (1999).
  41. A.-L. Barabási, H. Jeong, R. Ravasz, Z. Néda, T. Vicsek, and A. Schubert, Physica A 311, 590 (2002).
  42. R. Pastor-Satorras, A. Vázquez and A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001).
  43. A. Vázquez, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. E 65, 0666130 (2002).
  44. Ph. Blanchard and M. O. Hongler, preprint.
  45. K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, and H. E. Stan- ley, Proc. Nat. Acad. Sci. 102, 9424 (2005).
  46. P. Holme, Phys. Rev. E 71, 046119 (2005).
  47. F. J. Omori, Coll. Sci. Imper. Univ. Tokyo 7, 111 (1894).
  48. B.-F. Apostol, Euler's transform and a generalized Omori's law, prewprint.
  49. G. M. Viswanathan et al, Nature 381, 413 (1996).
  50. S. Zapperi, A. Vespignani and H. E. Stanley Nature 388, 658 (1997).
  51. B. Suki, A.-L. Barabási, Z. Hantos, F. Petak, and H. E. Stanley, Nature 368, 615 (1994).
  52. P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).
  53. H. J. Jensen, Self-Organised Criticality (Cambridge Univerity Press, Cambridge, 1998).
  54. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
  55. M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E 53, 414 (1996).
  56. H. Flyvbjerg, K. Sneppen, and P. Bak, Phys. Rev. Lett. 71, 4087 (1993).
  57. J. de Boer, B. Derrida, H. Flyvbjerg, A.D. Jackson, and T. Wet- tig, Phys. Rev. Lett. 73 906-(1994).
  58. B. A. Huberman and D. Helbing, Europhys. Lett. 47, 196 (1999).
  59. D. Helbing, S. Lammer, T. Seidel, et al, Phys. Rev. E 70, 066116 (2004).
  60. D. Helbing, S. Lammer, U. Witt, et al, Phys. Rev. E 70, 056118 (2004).
  61. D. Helbing, I. Farkas and T. Vicsek, Nature 407, 487 (2000).