Academia.eduAcademia.edu

Outline

Designing Industrial Networks Using Ecological Food Web Metrics

2016, Environmental science & technology

https://doi.org/10.1021/ACS.EST.6B03066

Abstract

Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost...

References (53)

  1. Bohm, D. On Creativity, 2nd ed.; Routledge: London, 1998.
  2. Knight, D. J. Inspired by Nature. New York State Conservationist 2009, 63 (6), 30.
  3. Vukusic, P. Bio-inspired design. Optician 2010, 239 (6247), 20.
  4. Lurie-Luke, E. Product and technology innovation: what can biomimicry inspire? Biotechnol. Adv. 2014, 32 (8), 1494-505.
  5. Layton, A.; Bras, B.; Weissburg, M., Ecological Principles and Metrics for Improving Material Cycling Structures in Manufacturing Networks. ASME Journal of Manufacturing Science and Engineering, 2016, 138, (10).10100210.1115/1.4033689
  6. Layton, A.; Bras, B.; Weissburg, M., Ecological Robustness as a Design Principle for Sustainable Industrial Systems. In ASME 2015 International Design Engineering Technical Conference; ASME: Boston, 2015.
  7. Layton, A.; Bras, B.; Weissburg, M., Industrial Ecosystems and Food Webs: An expansion and update of existing data for eco- industrial parks and understanding the ecological food webs they wish to mimic. J. Ind. Ecol. 2016, 20, (1).8510.1111/jiec.12283
  8. Layton, A. Food Webs: Realizing Biological Inspiration for Sustainable Industrial Resource Networks. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 2015.
  9. Bodini, A.; Bondavalli, C.; Allesina, S. Cities as ecosystems: Growth, development and implications for sustainability. Ecol. Modell. 2012, 245, 185-198.
  10. Mayer, A. L. Ecologically-based approaches to evaluate the sustainability of industrial systems. International Journal of Sustainable Society 2008, 1 (2), 117-133.
  11. Bodini, A. Building a systemic environmental monitoring and indicators for sustainability: What has the ecological network approach to offer? Ecol. Indic. 2012, 15 (1), 140-148.
  12. Hardy, C.; Graedel, T. E. Industrial Ecosystems as Food Webs. J. Ind. Ecol. 2002, 6 (1), 29-38.
  13. Zhang, Y.; Yang, Z.; Fath, B. D.; Li, S. Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities. Ecol. Modell. 2010, 221 (16), 1865-1879.
  14. Gamlin, L.; Vines, G. The Evolution of Life; Oxford University Press: New York, 1987.
  15. Isenmann, R. Industrial Ecology: Shedding more light on its perspective of understnading nature as model. Sustainable Development 2003, 11, 143-158.
  16. Jensen, P. D.; Basson, L.; Leach, M. Reinterpreting Industrial Ecology. J. Ind. Ecol. 2011, 15 (5), 680-692.
  17. Ehrenfeld, J. Industrial ecology: a new field or only a metaphor? J. Cleaner Prod. 2004, 12 (8-10), 825-831.
  18. Ashton, W. S. The Structure, Function, and Evolution of a Regional Industrial Ecosystem. J. Ind. Ecol. 2009, 13 (2), 228-246.
  19. Bodini, A.; Bondavalli, C. Towards a sustainable use of water resources: a whole-ecosystem approach using network analysis. Int. J. Environ. Pollut. 2002, 18 (5), 463-485.
  20. Chen, S.; Chen, B.; Su, M. Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation. Environ. Sci. Technol. 2015, 49 (19), 11594-11603.
  21. Chen, S.; Chen, B. Network Environ Perspective for Urban Metabolism and Carbon Emissions: A Case Study of Vienna, Austria. Environ. Sci. Technol. 2012, 46 (8), 4498-4506.
  22. Huang, J.; Ulanowicz, R. E. Ecological Network Analysis for Economic Systems: Growth and Development and Implications for Sustainable Development. PLoS One 2014, 9 (6), e100923.
  23. Yang, S.; Fath, B.; Chen, B. Ecological network analysis of embodied particulate matter 2.5 -A case study of Beijing. Appl. Energy 2016, DOI: 10.1016/j.apenergy.2016.04.087.
  24. Layton, A.; Reap, J. J.; Bras, B.; Weissburg, M. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles. PLoS One 2012, 7 (12), 1-7.
  25. Reap, J. J. Holistic Biomimicry: A Biologically Inspired Approach to Environmentally Benign Engineering. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, 2009.
  26. Garmestani, A. S.; Allen, C. R.; Mittelstaedt, J. D.; Stow, C. A.; Ward, W. A. Firm size diversity, functional richness, and resilience. Environmental and Development Economics 2006, 11, 533-551.
  27. Graedel, T. E.; van Beers, D.; Bertram, M.; Fuse, K.; Gordon, R. B.; Gritsinin, A.; Harper, E. M.; Kapur, A.; Klee, R. J.; Lifset, R.; Memon, L.; Spatari, S. The multilevel cycle of anthropogenic zinc. J. Ind. Ecol. 2005, 9 (3), 67-90.
  28. Kharrazi, A.; Rovenskaya, E.; Fath, B. D.; Yarime, M.; Kraines, S. Quantifying the sustainability of economic resource networks: An ecological information-based approach. Ecological Economics 2013, 90, 177-186.
  29. Reap, J.; B. A Method for Finding Biologically Inspired Guidelines for Environmentally Benign Design and Manufacturing. ASME Journal of Mechanical Design 2014, 136 (11), 11.
  30. Guidry, C. Modified Comparative Life Cycle Assessment of End-of- Life Options for Post-Consumer Products in Urban Regions, Masters Thesis, Georgia Institute of Technology, Atlanta, GA, 2008. (31) Intlekofer. Environmental implications of leasing. Masters Thesis, Georgia Institute of Technology, Atlanta, GA, 2009. (32) Borrett, S. R.; Lau, M. K. enaR Program, 2.0; 2013.
  31. Borrett, S. R.; Fath, B. D.; Patten, B. C. Functional integration of ecological networks through pathway proliferation. J. Theor. Biol. 2007, 245 (1), 98-111.
  32. Cohen, J. E.; Beaver, R. A.; Cousins, S. H.; DeAngelis, D. L.; Goldwasser, L.; Heong, K. L.; Holt, R. D.; Kohn, A. J.; Lawton, J. H.; Martinez, N.; O'Malley, R.; Page, L. M.; Patten, B. C.; Pimm, S. L.; Polis, G. A.; Rejmańek, M.; Schoener, T. W.; Schoenly, K.; Sprules, W. G.; Teal, J. M.; Ulanowicz, R. E.; Warren, P. H.; Wilbur, H. M.; Yodzis, P. Improving Food Webs. Ecology 1993, 74 (1), 252-258.
  33. Polis, G. A. Complex trophic interactions in deserts: an empirical critique of food-web theory. Am. Nat. 1991, 138 (1), 123- 155.
  34. Borrett, S. R. Throughflow centrality is a global indicator of the functional importance of species in ecosystems. Ecol. Indic. 2013, 32, 182-196.
  35. Kazanci, C.; Matamba, L.; Tollner, E. W. Cycling in ecosystems: An individual based approach. Ecol. Modell. 2008, 220, 2908.
  36. Allesina, S.; Ulanowicz, R. E. Cycling in ecological networks: Finn's index revisited. Comput. Biol. Chem. 2004, 28 (3), 227-33.
  37. Schaubroeck, T.; Staelens, J.; Verheyen, K.; Muys, B.; Dewulf, J. Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem. Ecol. Modell. 2012, 247, 144-156.
  38. Suh, S. Theory of materials and energy flow analysis in ecology and economics. Ecol. Modell. 2005, 189 (3-4), 251-269.
  39. Finn, J. T. Measures of ecosystem structure and function derived from analysis of flows. J. Theor. Biol. 1976, 56 (2), 363-380.
  40. Dunne, J. A.; Williams, R. J.; Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters 2002, 5 (4), 558-567.
  41. Schoener, T. H. Food Webs from the Small to the Large. Ecology 1989, 70 (6), 1559-1589.
  42. Pimm, S. L. Food Webs; Chapman and Hall: London, 1982.
  43. Fath, B. D.; Halnes, G. Cyclic energy pathways in ecological food webs. Ecol. Modell. 2007, 208 (1), 17-24.
  44. Fath, B. D. Network analysis: foundations, extensions, and applications of a systems theory of the environment. Ph.D. Dissertation, University of Georgia, Athens, 1998.
  45. Ulanowicz, R. E. Growth and Development: Ecosystems Phenomenology; Springer-Verlag: New York, 1986.
  46. Bailey, R.; Bras, B.; Allen, J. Applying Ecological Input-Output Flow Analysis to Material Flows in Industrial Systems: Part II: Flow Metrics. J. Ind. Ecol. 2005, 8 (1), 69-91.
  47. Odum, E. P. The Strategy of Ecosystem Development. Science 1969, 164 (3877), 262-270.
  48. Schmitz, O. J. Indirect Effects in Communities and Ecosystems: The Role of Trophic and Nontrophic Interactions. Princeton Guide to Ecology 2009, 289-295.
  49. Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 1994, 25, 443-466.
  50. Strauss, S. Y. Indirect effects in community ecology their definition study and importance. Trends in Ecology and Evolution 1991, 6 (7), 206-210.
  51. Chertow, M. R. Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and Environment 2000, 25 (1), 313-337.
  52. Ehrenfeld, J.; Gertler, N. Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. J. Ind. Ecol. 1997, 1 (1), 67-79.
  53. Fath, B. D. Quantifying economic and ecological sustainability. Ocean & Coastal Management 2015, 108, 13-19.