Integrable Boundaries and Universal TBA Functional Equations
2002, Birkhäuser Boston eBooks
https://doi.org/10.1007/978-1-4612-0087-1_14Abstract
We derive the fusion hierarchy of functional equations for critical AD -E lattice models related to the sℓ(2) unitary minimal models, the parafermionic models and the supersymmetric models of conformal field theory and deduce the related TBA functional equations. The derivation uses fusion projectors and applies in the presence of all known integrable boundary conditions on the torus and cylinder. The resulting TBA functional equations are universal in the sense that they depend only on the Coxeter number of the AD -E graph and are independent of the particular integrable boundary conditions. We conjecture generally that TBA functional equations are universal for all integrable lattice models associated with rational CFTs and their integrable perturbations.
References (32)
- Rodney J. Baxter. Partition function of the eight-vertex lattice model. Ann. Physics, 70:193-228, 1972.
- Rodney J. Baxter and Paul A. Pearce. Hard hexagons: interfacial tension and correlation length. J. Phys. A, 15(3):897-910, 1982.
- Paul A. Pearce. Transfer-matrix inversion identities for exactly solv- able lattice-spin models. Phys. Rev. Lett., 58(15):1502-1504, 1987.
- V. V. Bazhanov and N. Yu. Reshetikhin. Critical RSOS models and conformal field theory. Internat. J. Modern Phys. A, 4(1):115-142, 1989.
- Paul A. Pearce. Row transfer matrix functional equations for A-D-E lattice models. In Infinite analysis, Part A, B (Kyoto, 1991), pages 791-804. World Sci. Publishing, River Edge, NJ, 1992.
- Andreas Klümper and Paul A. Pearce. Conformal weights of RSOS lattice models and their fusion hierarchies. Physica A, 183(3):304-350, 1992.
- Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki. Functional rela- tions in solvable lattice models. I. Functional relations and representa- tion theory. Internat. J. Modern Phys. A, 9(30):5215-5266, 1994. Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki. Functional rela- tions in solvable lattice models. II. Applications. Internat. J. Modern Phys. A, 9(30):5267-5312, 1994. Atsuo Kuniba and Junji Suzuki. Functional relations and ana- lytic Bethe ansatz for twisted quantum affine algebras. J. Phys. A, 28(3):711-722, 1995.
- Rodney J. Baxter. Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1989. Reprint of the 1982 original.
- Al. B. Zamolodchikov. Thermodynamic Bethe ansatz in relativistic models: scaling 3-state Potts and Lee-Yang models. Nuclear Phys. B, 342(3):695-720, 1990.
- Al. B. Zamolodchikov. Thermodynamic Bethe ansatz for RSOS scat- tering theories. Nuclear Phys. B, 358(3):497-523, 1991.
- Al. B. Zamolodchikov. TBA equations for integrable perturbed su(2) k × su(2) l /su(2) k+l coset models. Nuclear Phys. B, 366(1):122- 132, 1991.
- Al. B. Zamolodchikov. From tricritical Ising to critical Ising by ther- modynamic Bethe ansatz. Nuclear Phys. B, 358(3):524-546, 1991.
- Paul A. Pearce and Bernard Nienhuis. Scaling limit of RSOS lattice models and TBA equations. Nuclear Phys. B, 519(3):579-596, 1998.
- Anatol N. Kirillov. Dilogarithm identities and spectra in conformal field theory. In Low-dimensional topology and quantum field theory (Cambridge, 1992), pages 99-108. Plenum, New York, 1993.
- A. N. Kirillov. Dilogarithm identities, partitions, and spectra in con- formal field theory. Algebra i Analiz, 6(2):152-175, 1994.
- E. K. Sklyanin. Boundary conditions for integrable quantum systems. J. Phys. A, 21(10):2375-2389, 1988.
- Roger E. Behrend, Paul A. Pearce, and David L. O'Brien. Interaction- round-a-face models with fixed boundary conditions: the ABF fusion hierarchy. J. Statist. Phys., 84(1-2):1-48, 1996.
- David L. O'Brien and Paul A. Pearce. Surface free energies, interfa- cial tensions and correlation lengths of the ABF models. J. Phys. A, 30(7):2353-2366, 1997.
- David L. O'Brien, Paul A. Pearce, and S. Ole Warnaar. Analytic calculation of conformal partition functions: tricritical hard squares with fixed boundaries. Nuclear Phys. B, 501(3):773-799, 1997.
- Roger E. Behrend and Paul A. Pearce. Integrable and conformal boundary conditions for sl(2) A-D-E lattice models and unitary min- imal conformal field theories. In Proceedings of the Baxter Revolution in Mathematical Physics (Canberra, 2000), volume 102, pages 577-640, 2001.
- Christian Mercat and Paul A. Pearce. Integrable and Conformal Boundary Conditions for Z k Parafermions on a Cylinder. To appear in J. Phys. A, 2001.
- Christoph Richard and Paul A. Pearce. Integrable lattice realizations of N = 1 superconformal boundary conditions. In preparation, 2001.
- Roger E. Behrend, Paul A. Pearce, Valentina B. Petkova, and Jean- Bernard Zuber. Boundary conditions in rational conformal field theo- ries. Nuclear Phys. B, 579(3):707-773, 2000.
- C. H. Otto Chui, Christian Mercat, William P. Orrick, and Paul A. Pearce. Integrable and conformal twisted boundary conditions for uni- tary minimal A-D-E models on the torus. hep-th, /0106182, 2001.
- V. B. Petkova and J.-B. Zuber. Generalised twisted partition func- tions. Phys. Lett. B, 504(1-2):157-164, 2001.
- Je-Young Choi, Doochul Kim, and Paul A. Pearce. Boundary condi- tions and inversion identities for solvable lattice models with a sublat- tice symmetry. J. Phys. A, 22(10):1661-1671, 1989.
- C. H. Otto Chui, Christian Mercat, William P. Orrick, and Paul A. Pearce. Integrable and conformal twisted boundary conditions for uni- tary minimal A-D-E models on the torus. In preparation, 2001.
- V.B. Petkova and J.-B. Zuber. The many faces of ocneanu cells. Nuclear Phys. B, 603:449-496, 2001.
- Roger E. Behrend and Paul A. Pearce. A construction of solutions to reflection equations for interaction-round-a-face models. J. Phys. A, 29(24):7827-7835, 1996.
- Paul A. Pearce and Yu Kui Zhou. Intertwiners and A-D-E lattice models. Internat. J. Modern Phys. B, 7(20-21):3649-3705, 1993. Yang- Baxter equations in Paris (1992).
- Yu Kui Zhou and Paul A. Pearce. Fusion of A-D-E lattice models. Internat. J. Modern Phys. B, 8(25-26):3531-3577, 1994. Perspectives on solvable models.
- Roger E. Behrend and Paul A. Pearce. Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models. Internat. J. Mod- ern Phys. B, 11(23):2833-2847, 1997.