Academia.eduAcademia.edu

Outline

Parallel noising methods embedded in an adaptive memory

2007

Abstract
sparkles

AI

This paper presents an innovative technique for parallelizing noising methods, specifically applied to the traveling salesman problem (TSP). It combines noising methods with adaptive memory strategies and guided cooperative search to enhance solution optimization. Preliminary tests on various datasets demonstrate that while the parallel noising method yields results slightly above the best-known solutions, it effectively reduces computational time due to parallel execution, although further exploration is warranted for larger problem instances.

References (6)

  1. A. Le Bouthillier, T. G. Crainic, P. Kropf (2005a). A guided cooperative search for the vehicle routing problem with time windows. IEEE Intelligent Systems, 20(4), 36-42.
  2. A. Le Bouthillier, T. G. Crainic (2005b). A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Computers and Operations Research, 32(7), 1685-1708.
  3. Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. D. (2006). Metaheuristics for Hard Optimiza- tion: Methods and Case Studies. Springer.
  4. I. Charon, O. Hudry (2001). The noising method: A generalization of some metaheuristics. European Journal of Operational Research, 135, 86-101.
  5. Taillard, E. D. (1998). Programmation à mémoire adaptative et algorithmes pseudo-gloutons : nouvelles perspectives pour les méta-heuristiques. Thèse d'habilitation à diriger des recherches, Université de Versailles, France.
  6. Taillard, E. D., Gambardella, L. M., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive memory programming : A unified view of meta-heuristics. European Journal of Operational Research, 135(1), 1-16.