Academia.eduAcademia.edu

Outline

Analytic Tableau Calculi for KLM Rational Logic R

2006, Lecture Notes in Computer Science

Abstract

In this paper we present a tableau calculus for the rational logic R of default reasoning, introduced by Kraus, Lehmann and Magidor. Our calculus is obtained by introducing suitable modalities to interpret conditional assertions, and makes use of labels to represent possible worlds. We also provide a decision procedure for R, and study its complexity.

References (21)

  1. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2) (1990) 167-207
  2. Gardenförs, P.: Knowledge in Flux. MIT Press (1988)
  3. Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. Journal of the ACM 48(4) (2001) 648-685
  4. Friedman, N., Halpern, J.Y., Koller, D.: First-order conditional logic for default reasoning revisited. ACM TOCL 1(2) (2000) 175-207
  5. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and pos- sibility theory. Artificial Intelligence 92(1-2) (1997) 259-276
  6. Benferhat, S., Saffiotti, A., Smets, P.: Belief functions and default reasoning. Artificial Intelligence 122(1-2) (2000) 1-69
  7. Weydert, E.: System jlz -rational default reasoning by minimal ranking constructions. Jour- nal of Applied Logic 1(3-4) (2003) 273-308
  8. Pearl, J.: System z: A natural ordering of defaults with tractable applications to nonmono- tonic reasoning. In: Proc. of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, Morgan Kaufmann Publishers Inc. (1990) 121-135
  9. Makinson, D.: Bridges from Classical to Nonmonotonic logic. London: King's College Publications. Series: Texts in Computing, vol 5 (2005)
  10. Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal of the IGPL 11(1) (2003) 69-96
  11. Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: From basic entailments to plausible relations. Logic Journal of the IGPL 8(2) (2000) 119-148
  12. Dubois, D., Fargier, H., Perny, P., Prade, H.: Qualitative decision theory: from savages ax- ioms to nonmonotonic reasoning. Journal of the ACM 49(4) (2002) 455-495
  13. Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach. Art. Int. 148(1-2) (2003) 219-260
  14. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55(1) (1992) 1-60
  15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM Preferen- tial and Cumulative Logics. In: Proc. of LPAR 2005, LNAI 3835, Springer (2005) 666-681
  16. Crocco, G., Lamarre, P.: On the connection between non-monotonic inference systems and conditional logics. In: Proc. of KR 92. (1992) 565-571
  17. Boutilier, C.: Conditional logics of normality: a modal approach. Art. Int. 68(1) (1994) 87-154
  18. Hughes, G., Cresswell, M.: A Companion to Modal Logic. Methuen (1984)
  19. Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning: Cumulative consequence relations. J. of Logic and Computation 12(6) (2002) 1027-1060
  20. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculi for preference-based conditional logics. In: Proc. of TABLEAUX 2003, LNAI 2796, Springer (2003) 81-101
  21. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Extensions of tableau calculi for preference-based conditional logics. In: Proc. of M4M-4, Informatik-Bericht 194 (2005) 220-234