Toward Model-Based Big Data-as-a-Service: The TOREADOR Approach
2017, Advances in Databases and Information Systems
Abstract
The full potential of Big Data Analytics (BDA) can be unleashed only by overcoming hurdles like the high architectural complexity and lack of transparency of Big Data toolkits, as well as the high cost and lack of legal clearance of data collection, access and processing procedures. We first discuss the notion of Big Data Analytics-as-a-Service (BDAaaS) to help potential users of BDA in overcoming such hurdles. We then present TOREADOR, a first approach to BDAaaS.
References (22)
- Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J., Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Kossmann, D., Madden, S., Mehrotra, S., Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston, C., Ooi, B.C., Ré, C., Suciu, D., Stonebraker, M., Walter, T., Widom, J.: The beckman report on database research. ACM SIGMOD Record 43(3), 61-70 (December 2014)
- Ardagna, C., Damiani, E.: Network and storage latency attacks to online trading protocols in the cloud. In: Proc. of the International Conference on Cloud Com- puting, Trusted Computing and Secure Virtual Infrastructures. Amantea, Italy (October 2014)
- Ardagna, C.A., Bellandi, V., Bezzi, M., Ceravolo, P., Damiani, E.: Model-driven methodology for big data analytics-as-a-service. In: Proc. of the 6th IEEE Interna- tional Congress on Big Data (BigData Congress 2017). Honolulu, HI, USA (June 2017)
- Ardagna, C.A., Ceravolo, P., Damiani, E.: Big data analytics as-a-service: Issues and challenges. In: Proc. of the IEEE International Conference on Big Data (Big Data 2016). Washington, DC, USA (December 2016)
- Austin, D.: eDiscovery Trends: CGOCs Information Lifecycle Governance Leader Reference Guide (May 2012), http://www.ediscoverydaily.com
- Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS Operating Systems Review 49(1), 71-79 (2015)
- Eckhoff, D., Sommer, C.: Driving for big data? privacy concerns in vehicular net- working. IEEE Security Privacy 12(1), 77-79 (January 2014)
- Ekbia, H., Mattioli, M., Kouper, I., Arave, G., Ghazinejad, A., Bowman, T., Suri, V.R., Tsou, A., Weingart, S., Sugimoto, C.R.: Big data, bigger dilemmas: A critical review. Journal of the Association for Information Science and Technology 66(8), 1523-1545 (2015)
- European Commission: Helping SMEs Fish the Big Data Ocean (July 2014), http://ec.europa.eu/digital-agenda/en/news/helping-smes-fish-big-data-ocean
- IDC: Six patterns of big data and analytics adoption (3 2016), http://www.oracle.com/us/technologies/big-data/six-patterns-big-data- infographic-2956541.pdf
- IDC: Worldwide Semiannual Big Data and Analytics Spending Guide (October 2016), http://www.idc.com/getdoc.jsp?containerId=prUS41826116
- Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ra- makrishnan, R., Shahabi, C.: Big data and its technical challenges. Communication of the ACM 57(7), 86-94 (July 2014)
- Lomotey, R.K., Deters, R.: Analytics-as-a-service framework for terms association mining in unstructured data. International Journal of Business Process Integration and Management (IJBPIM) 7(1), 49-61 (2014)
- Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving computing in big data era. IEEE Network 28(4), 46-50 (July 2014)
- Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: The next frontier for innovation, competition, and productivity (2011), http://tinyurl.com/z9wjhuw
- Markl, V.: Breaking the chains: On declarative data analysis and data indepen- dence in the big data era. Proc. of VLDB Endowment 7(13), 1730-1733 (August 2014)
- Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., et al.: Bringing semantics to web services: The owl-s approach. In: Proc. of the International Workshop on Semantic Web Services and Web Process Composition (SWSWPC 2004). San Diego, CA, USA (July 2004)
- Martin, K.E.: Ethical issues in the big data industry. MIS Quarterly Executive 14, 2 (2015)
- Prud, E., Seaborne, A., et al.: Sparql query language for rdf (2006) 20. Rahman, N.: Factors affecting big data technology adoption. http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1099 (2016)
- Russom, P.: Big Data Analytics. TDWI best practices report, TDWI Research (2014), http://www.iso.org/iso/home/news index/news archive/news.htm?refid=Ref1821
- Salleh, K.A., Janczewski, L.: Adoption of big data solutions: A study on its security determinants using sec-toe framework. In: Proc. of the International Conference on Information Resources Management (CONF-IRM 2016). Cape Town, South Africa (May 2016)
- Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: Strate- gic vision and state-of-the-art. Journal of Manufacturing Systems 32(4), 564-579 (2013)