EXTREME CYCLES. THE CENTER OF A LEAVITT PATH ALGEBRA
Abstract
In this paper we introduce new techniques in order to deepen into the structure of a Leavitt path algebra with the aim of giving a description of the center. Extreme cycles appear for the first time; they concentrate the purely infinite part of a Leavitt path algebra and, jointly with the line points and vertices in cycles without exits, are the key ingredients in order to determine the center of a Leavitt path algebra. Our work will rely on our previous approach to the center of a prime Leavitt path algebra . We will go further into the structure itself of the Leavitt path algebra. For example, the ideal I(P ec ∪ P c ∪ P l ) generated by vertices in extreme cycles (P ec ), by vertices in cycles without exits (P c ) and by line points (P l ) will be a dense ideal in some cases, for instance in the finite one or, more generally, if every vertex connects to P l ∪P c ∪P ec . Hence its structure will contain much of the information about the Leavitt path algebra. In the row-finite case, we will need to add a new hereditary set: the set of vertices whose tree has infinite bifurcations (P b ∞ ).
References (19)
- G. Abrams, P. Ara, M. Siles Molina, Leavitt path algebras. A primer and handbook. Springer. To appear.
- G. Abrams, G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math. 34 (2) (2008), 423-442.
- G. Abrams, G. Aranda Pino, F. Perera, M. Siles Molina. Chain conditions for Leavitt path algebras. Forum Math., 22 (2010), 95-114.
- G. Abrams, K. Rangaswamy, M. Siles Molina, The socle series of a Leavitt path algebra, Israel J. Math. 184 (2011), 413-435.
- P. Ara, M. A. Moreno, E. Pardo, Nonstable K-Theory for graph algebras, Algebra Represent. Theory 10 (2007), 157-178.
- P. Ara, E. Pardo, Stable rank of Leavitt path algebras, Proc. Amer. Math. Soc. 136 (7) (2008), 2375-2386.
- G. Aranda Pino, J. R. Brox, Mercedes Siles Molina, Cycles in Leavitt path algebras by means of idempotents, Forum Math. DOI 10.1515/forum-2011-0134.
- G. Aranda Pino, K. Crow, The Center of a Leavitt path algebra, Rev. Math. Iberoamericana 27 (2) (2011), 621-644.
- G. Aranda Pino, D. Martín Barquero, C. Martín González, M. Siles Molina. The socle of a Leavitt path algebra. J. Pure Appl. Algebra 212 (2008) 500-509.
- G. Aranda Pino, D. Martín Barquero, C. Martín González, M. Siles Molina, Socle theory for Leavitt path algebras of arbitrary graphs, Rev. Mat Iber. 26 (2010), 611-638.
- G. Aranda Pino, E. Pardo, M. Siles Molina, Exchange Leavitt path algebras and stable rank, J. Algebra 305 (2) (2006), 912-936.
- G. Aranda Pino, K.M. Rangaswamy, M. Siles Molina. Weakly regular and self-injective Leavitt path algebras over arbitrary graphs. Algebr. Represent. Theor. 14 (2011), 751-777.
- M. G. Corrales García, D. Martín Barquero, C. Martín González, M. Siles Molina, J. F. Solanilla Hernández, Centers of path algebras, Cohn and Leavitt path algebras (Preprint).
- K.R. Goodearl. Leavitt path algebras and direct limits. Contemp. Math. 480 (2009), 165-187.
- T. Y. Lam, Lectures on modules and rings, Springer-Verlag Berlin Heidelberg New York, 1999.
- C. Nǎstǎsescu, F. van Oystaeyen. Graded Ring Theory. North-Holland (1982).
- M. Siles Molina, Algebras of quotients of Lie algebras, J. Pure Appl. Algebra 188 (2004), 175-188.
- M. Siles Molina, Algebras of quotients of path algebras, J. Algebra 319 (12) (2008), 5265-5278.
- M. G. Corrales García: Centro Regional Universitario de Coclé: "Dr. Bernardo Lom- bardo", Universidad de Panamá. Apartado Postal 0229. Penonomé, Provincia de Coclé. Panamá. E-mail address: mcorrales@ancon.up.ac.pa