Academia.eduAcademia.edu

Outline

EXTREME CYCLES. THE CENTER OF A LEAVITT PATH ALGEBRA

Abstract

In this paper we introduce new techniques in order to deepen into the structure of a Leavitt path algebra with the aim of giving a description of the center. Extreme cycles appear for the first time; they concentrate the purely infinite part of a Leavitt path algebra and, jointly with the line points and vertices in cycles without exits, are the key ingredients in order to determine the center of a Leavitt path algebra. Our work will rely on our previous approach to the center of a prime Leavitt path algebra . We will go further into the structure itself of the Leavitt path algebra. For example, the ideal I(P ec ∪ P c ∪ P l ) generated by vertices in extreme cycles (P ec ), by vertices in cycles without exits (P c ) and by line points (P l ) will be a dense ideal in some cases, for instance in the finite one or, more generally, if every vertex connects to P l ∪P c ∪P ec . Hence its structure will contain much of the information about the Leavitt path algebra. In the row-finite case, we will need to add a new hereditary set: the set of vertices whose tree has infinite bifurcations (P b ∞ ).

References (19)

  1. G. Abrams, P. Ara, M. Siles Molina, Leavitt path algebras. A primer and handbook. Springer. To appear.
  2. G. Abrams, G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math. 34 (2) (2008), 423-442.
  3. G. Abrams, G. Aranda Pino, F. Perera, M. Siles Molina. Chain conditions for Leavitt path algebras. Forum Math., 22 (2010), 95-114.
  4. G. Abrams, K. Rangaswamy, M. Siles Molina, The socle series of a Leavitt path algebra, Israel J. Math. 184 (2011), 413-435.
  5. P. Ara, M. A. Moreno, E. Pardo, Nonstable K-Theory for graph algebras, Algebra Represent. Theory 10 (2007), 157-178.
  6. P. Ara, E. Pardo, Stable rank of Leavitt path algebras, Proc. Amer. Math. Soc. 136 (7) (2008), 2375-2386.
  7. G. Aranda Pino, J. R. Brox, Mercedes Siles Molina, Cycles in Leavitt path algebras by means of idempotents, Forum Math. DOI 10.1515/forum-2011-0134.
  8. G. Aranda Pino, K. Crow, The Center of a Leavitt path algebra, Rev. Math. Iberoamericana 27 (2) (2011), 621-644.
  9. G. Aranda Pino, D. Martín Barquero, C. Martín González, M. Siles Molina. The socle of a Leavitt path algebra. J. Pure Appl. Algebra 212 (2008) 500-509.
  10. G. Aranda Pino, D. Martín Barquero, C. Martín González, M. Siles Molina, Socle theory for Leavitt path algebras of arbitrary graphs, Rev. Mat Iber. 26 (2010), 611-638.
  11. G. Aranda Pino, E. Pardo, M. Siles Molina, Exchange Leavitt path algebras and stable rank, J. Algebra 305 (2) (2006), 912-936.
  12. G. Aranda Pino, K.M. Rangaswamy, M. Siles Molina. Weakly regular and self-injective Leavitt path algebras over arbitrary graphs. Algebr. Represent. Theor. 14 (2011), 751-777.
  13. M. G. Corrales García, D. Martín Barquero, C. Martín González, M. Siles Molina, J. F. Solanilla Hernández, Centers of path algebras, Cohn and Leavitt path algebras (Preprint).
  14. K.R. Goodearl. Leavitt path algebras and direct limits. Contemp. Math. 480 (2009), 165-187.
  15. T. Y. Lam, Lectures on modules and rings, Springer-Verlag Berlin Heidelberg New York, 1999.
  16. C. Nǎstǎsescu, F. van Oystaeyen. Graded Ring Theory. North-Holland (1982).
  17. M. Siles Molina, Algebras of quotients of Lie algebras, J. Pure Appl. Algebra 188 (2004), 175-188.
  18. M. Siles Molina, Algebras of quotients of path algebras, J. Algebra 319 (12) (2008), 5265-5278.
  19. M. G. Corrales García: Centro Regional Universitario de Coclé: "Dr. Bernardo Lom- bardo", Universidad de Panamá. Apartado Postal 0229. Penonomé, Provincia de Coclé. Panamá. E-mail address: mcorrales@ancon.up.ac.pa