Academia.eduAcademia.edu

Outline

Monocular human pose tracking using multi frame part dynamics

2009, 2009 Workshop on Motion and Video Computing (WMVC)

Abstract

Efficient monocular human pose tracking in dynamic scenes is an important problem. Existing pose tracking methods either use activity priors to restrict the search space, or use generative body models with weak kinematic constraints to infer pose over multiple frames; these often tends to be slow. We develop an efficient algorithm to track human pose by estimating multi-frame body dynamics without activity priors. We present a monte-carlo approximation of the body dynamics using spatio-temporal distributions over part tracks. To obtain tracks that favor kinematically feasible body poses, we propose a novel "kinematically constrained" particle filtering approach which results in more accurate pose tracking than other stochastic approaches that use single frame priors. We demonstrate the effectiveness of our approach on videos with actors performing various actions in indoor dynamic scenes.

References (20)

  1. N. Courty and E. Arnaud. Inverse kinematics using sequen- tial monte carlo methods. In AMDO, july 2008.
  2. A. Elgammal and C. su Lee. Inferring 3d body pose from silhouettes using activity manifold learning. In CVPR, pages 681-688, 2004.
  3. P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc- tures for object recognition. IJCV, 61(1):55-79, 2005.
  4. V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In CVPR, 2008.
  5. J. Gao and J. Shi. Multiple frame motion inference using belief propagation. In AFGR, pages 875-882, 2004.
  6. G. Hua, M.-H. Yang, and Y. Wu. Learning to estimate hu- man pose with data driven belief propagation. In CVPR, vol- ume 2, pages 747-754 vol. 2, June 2005.
  7. D. Huttenlocher, G. Klanderman, and W. Rucklidge. Com- paring images using the hausdorff distance. T-PAMI, 15(9):850-863, 1993.
  8. H. Jiang and D. Martin. Global pose estimation using non- tree models. In CVPR, June 2008.
  9. M. Lee and R. Nevatia. Human pose tracking using multi- level structured models. In ECCV (3), pages 368-381, 2006.
  10. P. Natarajan and R. Nevatia. View and scale invariant action recognition using multiview shape-flow models. In CVPR, 2008.
  11. D. Ramanan. Learning to parse images of articulated bodies. In B. Schölkopf, J. Platt, and T. Hoffman, editors, NIPS 19, pages 1129-1136, 2007.
  12. D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a pose: tracking people by finding stylized poses. In CVPR, pages 271-278, 2005.
  13. X. Ren, A. C. Berg, and J. Malik. Recovering human body configurations using pairwise constraints between parts. In ICCV, pages 824-831, 2005.
  14. R. Rosales and S. Sclaroff. Combining generative and dis- criminative models in a framework for articulated pose esti- mation. IJCV, 67(3):251-276, 2006.
  15. G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estima- tion with parameter-sensitive hashing. In ICCV, 2003.
  16. L. Sigal and M. J. Black. Predicting 3d people from 2d pic- tures. In AMDO, pages 185-195, 2006.
  17. L. Sigal, B. Sidharth, S. Roth, M. Black, and M. Isard. Track- ing loose-limbed people. In CVPR, volume I, pages 421- 428, June 2004.
  18. R. Urtasun and T. Darrell. Sparse probabilistic regression for activity-independent human pose inference. In CVPR, June 2008.
  19. M. Vondrak, L. Sigal, and O. Jenkins. Physical simulation for probabilistic motion tracking. In CVPR, Jun 2008.
  20. B. Wu and R. Nevatia. Detection of multiple, partially oc- cluded humans in a single image by bayesian combination of edgelet part detectors. In ICCV, pages 90-97, 2005.