Academia.eduAcademia.edu

Outline

An overview of material removal processes and its importance

E3S Web of Conferences

https://doi.org/10.1051/E3SCONF/202339101077

Abstract

Good surface finishing, quality, and maximizing metal removal are characteristics feature of machining operation. The process variables affect the product’s surface roughness and rate of metal removal. Proper management of the process variables makes it easier to lower machining costs and enhance product quality. In order to get the best product, extensive research has been done previously to optimize the procedure specifications in any machining process. This paper studies how important the material removal process is, its benefits, and its relevancy in the manufacturing industries. The most recent turning process research uses the Response Surface Methodology (RMS). Process variables including feed, cutting speed, and depth of cut work well. In most circumstances, a technical need for mechanical products, the surface profile, and the roughness of a machined workpiece are two of the most significant product quality features. The necessary surface quality must be obtained for a part...

References (81)

  1. E3S Web of Conferences 391, 01077 (2023) https://doi.org/10.1051/e3sconf/202339101077
  2. ICMED-ICMPC 2023
  3. E3S Web of Conferences 391, 01077 (2023) https://doi.org/10.1051/e3sconf/202339101077
  4. ICMED-ICMPC 2023
  5. M. N. P. Sastry, K. D. Devi, K. M. Reddy. Analysis and optimization of machining process parameters using the design of experiments. Industrial Engineering Letters, 2(9), 23- 32, (2012).
  6. C. Lu.Study on prediction of surface quality in the machining process. Journal of materials processing technology, 205(1-3), 439-450, (2008).
  7. P. Kovač, I. Mankova, M. Gostimirović, M. Sekulić, B. Savković. A review of machining monitoring systems. Journal of production engineering, 14(1), 1-6, (2011).
  8. G. Park, M. T. Bement, D. A. Hartman, R. E. Smith, C. R. Farrar. The use of active materials for machining processes: A review. International Journal of Machine Tools and Manufacture, 47(15), 2189-2206, (2007).
  9. I. S. Jawahir, E. Brinksmeier, R. M'saoubi, D. K. Aspinwall, J. C. Outeiro, Meyer, A. D. Jayal. Surface integrity in material removal processes: Recent advances. CIRP annals, 60(2), 603-626, (2011).
  10. S. Kara, W. Li. Unit process energy consumption models for material removal processes. CIRP annals, 60(1), 37-40, (2011).
  11. N. K. Jain, V. K. Jain. Modeling of material removal in mechanical type advanced machining processes: a state-of-art review. International journal of machine tools and manufacture, 41(11), 1573-1635, (2001).
  12. R. P. Singh, S. Singhal. Rotary ultrasonic machining: a review. Materials and manufacturing processes, 31(14), 1795-1824, (2016).
  13. O. Çakīr, A. Yardimeden, T. Ozben, E. Kilickap. Selection of cutting fluids in machining processes. Journal of Achievements in Materials and Manufacturing Engineering, 25(2), 99- 102, (2007).
  14. I. Tuersley, A. Pawaid, I. R. Pashby. Various methods of machining advanced ceramic materials. Journal of Materials Processing Technology, 42(4), 377-390, (1994).
  15. Y. Natarajan, P. K. Murugesan, M. Mohan, S. A. L. A. Khan. Abrasive Water Jet Machining process: A state of the art of the review. Journal of Manufacturing Processes, 49, 271-322, (2020).
  16. Y. Natarajan, P. K. Murugesan, M. Mohan, S. A. L. A. Khan. Abrasive Water Jet Machining process: A state of the art of the review. Journal of Manufacturing Processes, 49, 271-322, (2020).
  17. U. S. Dixit, S. N. Joshi, J. P. Davim. Incorporation of material behavior in modeling of metal forming and machining processes: A review. Materials & Design, 32(7), 3655-3670, (2011).
  18. A. K. Dubey, V. Yadava. Experimental study of Nd: YAG laser beam machining-An overview. Journal of materials processing technology, 195(1-3), 15-26, (2008).
  19. Lauwers, B. Surface integrity in hybrid machining processes. Procedia Engineering, 19, 241-251, (2011).
  20. A. Singh, R. Singh, R. Effect of powder mixed electric discharge machining (PMEDM) on various materials with different powders: A review. Int. J. Innov. Res. Sci. Technol, 2(3), 164-169, (2015).
  21. B. Bhattacharyya, B. N. Doloi, S. K. Sorkhel. Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology, 95(1-3), 145-154, (1999).
  22. B. Bhattacharyya, J. Munda, M. Malapati. Advancement in electrochemical micro- machining. International Journal of Machine Tools and Manufacture, 44(15), 1577-1589, (2004).
  23. Z. J. Pei, P. M. Ferreira, S. G. Kapoor, M. B. A. C. Haselkorn. Rotary ultrasonic machining for face milling of ceramics. International Journal of Machine Tools and Manufacture, 35(7), 1033-1046, (1995).
  24. G. Park, M. T. Bement, D. A. Hartman, R. E. Smith, C. R. Farrar. The use of active materials for machining processes: A review. International Journal of Machine Tools and Manufacture, 47(15), 2189-2206, (2007).
  25. J. Kozak, K. E. Oczoś. Selected problems of abrasive hybrid machining. Journal of Materials Processing Technology, 109(3), 360-366, (2001).
  26. D. Chandramohan, B. Murali, Machining of Composites-A Review. Academic Journal of Manufacturing Engineering, 12(3), (2014).
  27. A. Equbal, A. K. Sood. Electrical discharge machining: an overview on various areas of research. Manufacturing and Industrial Engineering, 13(1-2), (2014).
  28. A. W. Hashmi, H. S. Mali, A. Meena, I. A. Khilji, M. F. Hashmi. Machine vision for the measurement of machining parameters: A review. Materials Today: Proceedings, 56, 1939- 1946, (2022).
  29. U. Karaguzel, U. Olgun, E. Uysal, E. Budak, M. Bakkal. Increasing tool life in the machining of difficult-to-cut materials using nonconventional turning processes. The International Journal of Advanced Manufacturing Technology, 77, 1993-2004, (2015).
  30. M. Y. Khan, P. S. Rao, Electrical discharge machining: vital to manufacturing industries. International Journal of Innovative Technology and Exploring Engineering, 8(11), 1696- 1701, (2019).
  31. P. S. Sreejith, B. K. A. Ngoi. Material removal mechanisms in precision machining of new materials. International Journal of Machine Tools and Manufacture, 41(12), 1831-1843, (2001).
  32. S. Kara, W. Li. Unit process energy consumption models for material removal processes. CIRP annals, 60(1), 37-40, (2011).
  33. J. B. Mann, Y. Guo, C. Saldana, W. D. Compton, S. Chandrasekar. Enhancing material removal processes using modulation-assisted machining. Tribology International, 44(10), 1225-1235, (2011).
  34. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, F. O. Ilday. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537(7618), 84-88, (2016).
  35. I. S. Jawahir, E. Brinksmeier, R. M'saoubi, D. K. Aspinwa, J. C. Outeiro, D. Meyer, A. D. Jayal, Surface integrity in material removal processes: Recent advances. CIRP annals, 60(2), 603-626, (2011).
  36. S. Schiewer, B. Volesk. Biosorption processes for heavy metal removal. Environmental microbe-metal interactions, 329-362, (2000).
  37. F. Facchini, A. De Chirico, G. Mummolo. Comparative cost evaluation of material removal process and additive manufacturing in the aerospace industry. In Industrial Engineering and Operations Management, I: XXIV IJCIEOM, Lisbon, Portugal, July 18-20 24 (pp. 47-59). Springer International Publishing, (2019).
  38. H. Hocheng, W. T. Lei, H. S. Hsu. Preliminary study of material removal in electrical- discharge machining of SiC/Al. Journal of Materials Processing Technology, 63(1-3), 813- 818, (1997).
  39. J. F. Kahles, M. Field, Paper 4: Surface integrity: A new requirement for surfaces generated by material-removal methods. In Proceedings of the Institution of Mechanical Engineers, Conference Proceedings (Vol. 182, No. 11, pp. 31-45). Sage UK: London, England: SAGE Publications, (1967).
  40. J. B. Mann, Y. Guo, C. Saldana, H. Yeung, W. D. Compton, S. Chandrasekar, S. Modulation-assisted machining: a new paradigm in material removal processes. In Advanced Materials Research (Vol. 223, pp. 514-522). Trans Tech Publications Ltd.
  41. Mourtzis, D., Vlachou, E., Milas, N., & Xanthopoulos, N. (2016). A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring. Procedia Cirp, 41, 655-660, (2011).
  42. J. Lee, H. D. Ardakani, S. Yang, B. Bagheri. Industrial big data analytics and cyber- physical systems for future maintenance & service innovation. Procedia cirp, 38, 3-7, (2015).
  43. G. Mert, S. Waltemode, J. C. Aurich. How services influence the energy efficiency of machine tools: A case study of a machine tool manufacturer. Procedia CIRP, 29, 287-292, (2015).
  44. B. Bagheri, S. Yang, H. A. Kao, J. Lee. Cyber-physical systems architecture for self- aware machines in industry 4.0 environment. IFAC-PapersOnLine, 48(3), 1622-1627, (2015).
  45. R. Teti, K. Jemielniak, G. O'Donnell, D. Dornfeld. Advanced monitoring of machining operations. CIRP annals, 59(2), 717-739, (2010).
  46. F. Provost, T. Fawcett. Data science and its relationship to big data and data-driven decision making. Big data, 1(1), 51-59, (2013).
  47. R. Q. Sardinas, M. R. Santana, E. A. Brindis, E. A. Genetic algorithm-based multi- objective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence, 19(2), 127-133, (2006).
  48. V. F. Sousa, F. J. Silva. Recent advances in turning processes using coated tools-A comprehensive review. Metals, 10(2), 170, (2020).
  49. A. González-Laguna, J. Barreiro, A. Fernández-Abia, E. Alegre, V. González-Castro. Design of a TCM system based on vibration signal for metal turning processes. Procedia Engineering, 132, 405-412, (2015).
  50. A. Siddhpura, R. Paurobally. A review of flank wear prediction methods for tool condition monitoring in a turning process. The International Journal of Advanced Manufacturing Technology, 65, 371-393, (2013).
  51. S. Sharma, J. Singh, A. J. Obaid, A. V. Patyal. Tool-condition Monitoring in turning process of Fe-0.75 Mn-0.51 C steel with coated metal carbide inserts using multi-Sensor fusion strategy: A statistical analysis based ingenious approach. Journal of Green Engineering, 11, 2998-3013, (2021).
  52. M. Sen, H. S. Shan. A review of electrochemical macro-to micro-hole drilling processes. International journal of machine tools and manufacture, 45(2), 137-152, (2005).
  53. P. F. Zhang, N. J. Churi, Z. J. Pei, C. Treadwell. Mechanical drilling processes for titanium alloys: a literature review. Machining Science and Technology, 12(4), 417-444, (2008).
  54. C. D. Mize, J. C. Ziegert. Neural network thermal error compensation of a machining center. Precision Engineering, 24(4), 338-346, (2000).
  55. A. C. Okafor, Y. M. Ertekin. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools and Manufacture, 40(8), 1199-1213, (2000).
  56. J. Yuan, J. Ni, J. The real-time error compensation technique for CNC machining systems. Mechatronics, 8(4), 359-380, (1998).
  57. J. Madison. CNC machining handbook: basic theory, production data, and machining procedures. Industrial Press Inc., (1996).
  58. X. Zhu, S. Xiang, J. Yang, J. Novel thermal error modeling method for machining centers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(8), 1500-1508, (2015).
  59. C. Yue, H. Gao, X. Liu, S. Y. Liang. Part functionality alterations induced by changes of surface integrity in metal milling process: a review. Applied Sciences, 8(12), 2550, (2018).
  60. A. Y. Nikolaev. Simulation of the plain milling process. In IOP conference series: materials science and engineering (Vol. 177, No. 1, p. 012080). IOP Publishing. (2017).
  61. M. Wan, D. Y. Wen, Y. C. Ma, W. H. Zhang. On material separation and cutting force prediction in micro milling through involving the effect of the dead metal zone. International Journal of Machine Tools and Manufacture, 146, 103452, (2019).
  62. M. Gostimirovic, P. Kovac, B. Skoric, M. Sekulic. Effect of electrical pulse parameters on the machining performance in EDM, (2011).
  63. M. Gostimirovic, P. Kovac, M. Sekulic. An inverse heat transfer problem for optimization of the thermal process in machining. Sadhana, 36, 489-504, (2011).
  64. M. Gostimirovic, P. Kovac, M. Sekulic, B. Skoric. Influence of discharge energy on machining characteristics in EDM. Journal of mechanical science and Technology, 26, 173- 179, (2012).
  65. P. Kovac, D. Rodic, V. Pucovsky, B. Savkovic, M. Gostimirovic. Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent Manufacturing, 24, 755-762, (2013).
  66. I. S. Jawahir, X. Wang. Development of hybrid predictive models and optimization techniques for machining operations. Journal of Materials Processing Technology, 185(1-3), 46-59, (2007).
  67. A. D. Jayal, F. Badurdeen, O. W. Dillon Jr, I. S. Jawahir, I. S. Sustainable manufacturing: Modeling and optimization challenges at the product, process, and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152, (2010).
  68. P. J. Arrazola, T. Özel, D. Umbrello, M. Davies, I. S. Jawahir. Recent advances in the modelling of metal machining processes. Cirp Annals, 62(2), 695-718, (2013).
  69. W. Li, S. Kara. An empirical model for predicting the energy consumption of manufacturing processes: a case of turning process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(9), 1636-1646, (2011).
  70. J. R. Duflou, J. W. Sutherland, D. Dornfeld, C. Herrmann, J. Jeswiet, S. Kara, K. Kellens. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP annals, 61(2), 587-609, (2012).
  71. M. A. Davies, T. Ueda, R. M'saoubi, B. Mullany, A. L. Cooke. On the measurement of temperature in material removal processes. CIRP annals, 56(2), 581-604, (2007).
  72. P. Kovač, I. Mankova, M. Gostimirovic, M. Sekulic, B. Savković. A review of the experimental techniques for the measurement of temperature generated in material removal processes. Novi Sad, 2010, 13(1), 1, (2010).
  73. P. Kovač, I. Mankova, M. Gostimirovic, M. Sekulic, B. Savković. A review of the experimental techniques for the measurement of temperature generated in material removal processes. Novi Sad, 13(1), 1, (2010).
  74. Y. Yildiz, M. Nalbant. A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture, 48(9), 947-964, (2008).
  75. J. B. Mann, Y. Guo, C. Saldana, W. D. Compton, S. Chandrasekar. Enhancing material removal processes using modulation-assisted machining. Tribology International, 44(10), 1225-1235, (2011).
  76. M. A. Davies, T. Ueda, R. M'saoubi, B. Mullany, A. L. Cooke. On the measurement of temperature in material removal processes. CIRP annals, 56(2), 581-604, (2007).
  77. B. Shiari, R. E. Miller, D. D. Klug. Multiscale simulation of material removal processes at the nanoscale. Journal of the Mechanics and Physics of Solids, 55(11), 2384-2405, (2007).
  78. Y. Liu, B. Li, L. Kong. Molecular dynamics simulation of silicon carbide nanoscale material removal behavior. Ceramics International, 44(10), 11910-11913, (2018).
  79. R. Komanduri, S. Varghese, N. Chandrasekaran. On the mechanism of material removal at the nanoscale by cutting. Wear, 269(3-4), 224-228, (2010).
  80. Y. Y. Ye, R. Biswas, J. R. Morris, A. Bastawros, A. Chandra, A. Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology, 14(3), 390, (2003).
  81. C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, B. A. Mullany. Material removal mechanisms in lapping and polishing. CIRP annals, 52(2), 611-633, (2003).