Academia.eduAcademia.edu

Outline

Resolving Zero Divisors Using Hensel Lifting

2017

Abstract

Algorithms which compute modulo triangular sets must respect the presence of zero-divisors. We present Hensel lifting as a tool for dealing with them. We give an application: a modular algorithm for computing GCDs of univariate polynomials with coefficients modulo a radical triangular set over Q. Our modular algorithm naturally generalizes previous work from algebraic number theory. We have implemented our algorithm using Maple's recden package. We compare our implementation with the procedure RegularGcd in the RegularChains package.

References (21)

  1. John Abbott. Fault-tolerant modular reconstruction of rational numbers. Journal of Symbolic Computation Volume 80, pages 707 -718. May-June 2017.
  2. P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb. Comp., 28: 105 -124, 1999.
  3. S. Bosch. Algebraic Geometry and Commutative Algebra. Springer-Verlag London. 2013.
  4. W. S. Brown. On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors. J. ACM 18: 478 -504. 1971.
  5. D. Cox, J. Little, D. O'Shea. Ideals, Varieties and Algorithms. Springer-Verlag, 1991.
  6. X. Dahan, M. Moreno Maza, . Schost, W. Wu and Y. Xie. Lifting Techniques for Triangular Decompositions. Proceedings of ISSAC'05, Beijing, China, ACM Press, 2005.
  7. M. J. Encarnacion. Computing GCDs of Polynomials over Algebraic Number Fields, J. Symb. Comp. 20: 299 -313, 1995.
  8. J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed., Cambridge University Press, 2013.
  9. K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer, 1992.
  10. Mark van Hoeij and Michael Monagan, A modular GCD algorithm over number fields presented with multiple extensions. Proceedings of ISSAC 02, ACM Press, pp. 109 -116. 2002.
  11. Jiaxiong Hu and Michael Monagan, A Fast Parallel Sparse Polynomial GCD Algorithm. Pro- ceedings of ISSAC '16, ACM Press, pp. 271-278. 2016.
  12. E. Hubert. Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polyno- mial Systems. In Symbolic and Numerical Scientific Computing edited by F. Winkler and U. Langer. Lecture Notes in Computer Science 2630, pp. 1 -39. 2003.
  13. L. Langemyr, S. McCallum. The Computation of Polynomial GCDs over an Algebraic Number Field, J. Symbolic Computation 8, pp. 429 -448. 1989.
  14. Xin Li, Marc Moreno Maza, and Wei Pan. Computations Modulo Regular Chains. Proceedings of ISSAC '09, pp. 239-246, 2009. See also https://arxiv.org/pdf/0903.3690 .
  15. X. Li, M. Moreno Maza, and E Schost. Fast Arithmetic for Triangular Sets: from Theory to Practice. Journal of Symbolic Computation, 44(7): 891-907, 2009.
  16. Marc Moreno Maza, ric Schost, Paul Vrbik. Inversion Modulo Zero-Dimensional Regular Chains. Proceedings of Computer Algebra in Scientific Computing (CASC 2012), Springer Verlag, LNCS 6885, pages 224-235, 2012.
  17. M. B. Monagan. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction. Proceedings of ISSAC '2004, ACM Press, pp. 243-249, 2004.
  18. M. B. Monagan. In-place arithmetic for polynomials over Z n . Proceedings of DISCO '92, Springer-Verlag LNCS, 721, pp. 22-34, 1993.
  19. Paul S. Wang, M.J.T. Guy, and J.H. Davenport. P-adic reconstruction of rational numbers. ACM SIGSAM Bulletin 16(2): 2-3, 1982.
  20. P.J. Weinberger and L.P. Rothschild. Factoring Polynomials over Algebraic Number Fields. ACM Trans. on Math. Soft. 2(4): 335-350, 1976.
  21. Richard Zippel, Probabilistic Algorithms for Spare Polynomials. Proceedings of EUROSAM '79, Springer Lecture Notes on Computer Science 72, pp 216-226. 1979.