Academia.eduAcademia.edu

Outline

Carbon Dioxide Separation Technologies: Applicable to Net Zero

2023, Energies

https://doi.org/10.3390/EN16104100

Abstract

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

References (125)

  1. International Energy Agency. Global Energy Review: CO 2 Emissions in 2021 Global Emissions Rebound Sharply to Highest Ever Level; International Energy Agency: Paris, France, 2021.
  2. Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426-443. [CrossRef]
  3. Bhown, A.S.; Freeman, B.C. Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies. Environ. Sci. Technol. 2011, 45, 8624-8632. [CrossRef] [PubMed]
  4. Pandey, G.; Poothia, T.; Kumar, A. Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization. Appl. Energy 2022, 326, 119900. [CrossRef]
  5. Aaron, D.; Tsouris, C. Separation of CO 2 from Flue Gas: A Review. Sep. Sci. Technol. 2005, 40, 321-348. [CrossRef]
  6. Takamura, Y.; Aoki, J.; Uchida, S.; Narita, S. Application of high-pressure swing adsorption process for improvement of CO 2 recovery system from flue gas. Can. J. Chem. Eng. 2001, 79, 812-816. [CrossRef]
  7. Clausse, M.; Merel, J.; Meunier, F. Numerical parametric study on CO 2 capture by indirect thermal swing adsorption. Int. J. Greenh. Gas Control 2011, 5, 1206-1213. [CrossRef]
  8. Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F. Progress in Chemical-Looping Combustion and Reforming technologies. Prog. Energy Combust. Sci. 2012, 38, 215-282. [CrossRef]
  9. Erlach, B.; Schmidt, M.; Tsatsaronis, G. Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. Energy 2011, 36, 3804-3815. [CrossRef]
  10. Wong, S.; Bioletti, R. Carbon Dioxide Separation Technologies. Available online: http://www.ipcc.ch/ (accessed on 23 November 2022).
  11. Songolzadeh, M.; Soleimani, M.; Takht Ravanchi, M.; Songolzadeh, R. Carbon Dioxide Separation from Flue Gases: A Technologi- cal Review Emphasizing Reduction in Greenhouse Gas Emissions. Sci. World J. 2014, 2014, 828131. [CrossRef]
  12. Simpson, A.P.; Simon, A.J. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Convers. Manag. 2007, 48, 3034-3045. [CrossRef]
  13. Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO 2 capture/separation technologies: A review. Energy 2012, 46, 431-441. [CrossRef]
  14. Rackley, S.A. Absorption capture systems. In Carbon Capture and Storage, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 151-185.
  15. Sifat, N.S.; Haseli, Y. A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation. Energies 2019, 12, 4143. [CrossRef]
  16. Theo, W.L.; Lim, J.S.; Hashim, H.; Mustaffa, A.A.; Ho, W.S. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl. Energy 2016, 183, 1633-1663. [CrossRef]
  17. Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO 2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745-769. [CrossRef]
  18. Jansen, D.; Gazzani, M.; Manzolini, G.; van Dijk, E.; Carbo, M. Pre-combustion CO 2 capture. Int. J. Greenh. Gas Control 2015, 40, 167-187. [CrossRef]
  19. Figueroa, J.D.; Fout, T.; Plasynski, S.I.; McIlvried, H.; Srivastava, R.D. Advances in CO 2 Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program. Int. J. Greenh. Gas Control 2008, 2, 9-20. [CrossRef]
  20. Kim, Y.-S.; Yang, S.-M. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Sep. Purif. Technol. 2000, 21, 101-109. [CrossRef]
  21. Lee, S.C.; Choi, B.Y.; Lee, T.J.; Ryu, C.K.; Ahn, Y.S.; Kim, J.C. CO 2 absorption and regeneration of alkali metal-based solid sorbents. Catal. Today 2006, 111, 385-390. [CrossRef]
  22. Hu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenh. Gas Control 2016, 53, 28-40. [CrossRef]
  23. Bosch, H.; Versteeg, G.F.; Van Swaaij, W.P.M. Kinetics of the reaction of CO 2 with the sterically hindered amine 2-Amino-2- methylpropanol at 298 K. Chem. Eng. Sci. 1990, 45, 1167-1173. [CrossRef]
  24. Shrier, A.L.; Danckwerts, P.V. Carbon Dioxide Absorption into Amine-Promoted Potash Solutions. Ind. Eng. Chem. Fundam. 1969, 8, 415-423. [CrossRef]
  25. Feron, P.H.; Jansen, A. The production of carbon dioxide from flue gas by membrane gas absorption. Energy Convers. Manag. 1997, 38, S93-S98. [CrossRef]
  26. Bougie, F.; Iliuta, M.C. CO 2 Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling. J. Chem. Eng. Data 2011, 56, 1547-1554. [CrossRef]
  27. Fredriksen, S.B.; Jens, K.-J. Oxidative Degradation of Aqueous Amine Solutions of MEA, AMP, MDEA, Pz: A Review. Energy Procedia 2013, 37, 1770-1777. [CrossRef]
  28. da Silva, C.F.N.; Dias, A.P.B.; Santana, A.P.R.; Pizzo, J.S.; de Souza, F.M.; Lazarin, A.M.; Sernaglia, R.L.; Andreotti, E.I.S. Retraction: Intercalation of Amines into Layered Calcium Phosphate and Their New Behavior for Copper Retention from Ethanolic Solution. Open J. Synth. Theory Appl. 2013, 2, 1-7. [CrossRef]
  29. Kozak, F.; Petig, A.; Morris, E.; Rhudy, R.; Thimsen, D. Chilled ammonia process for CO 2 capture. Energy Procedia 2009, 1, 1419-1426. [CrossRef]
  30. Songolzadeh, M.; Ravanchi, M.T.; Soleimani, M. Carbon Dioxide Capture and Storage: A General Review on Adsorbents. Int. J. Chem. Mol. Eng. 2012, 6, 906-913. [CrossRef]
  31. Meisen, A.; Shuai, X. Research and development issues in CO 2 capture. Energy Convers. Manag. 1997, 38, S37-S42. [CrossRef]
  32. Liu, H.; Liu, B.; Lin, L.-C.; Chen, G.; Wu, Y.; Wang, J.; Gao, X.; Lv, Y.; Pan, Y.; Zhang, X.; et al. A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 2014, 5, 5147. [CrossRef]
  33. Mishra, A.K.; Ramaprabhu, S. Palladium nanoparticles decorated graphite nanoplatelets for room temperature carbon dioxide adsorption. Chem. Eng. J. 2012, 187, 10-15. [CrossRef]
  34. Abid, H.R.; Pham, G.H.; Ang, H.-M.; Tade, M.O.; Wang, S. Adsorption of CH 4 and CO 2 on Zr-metal organic frameworks. J. Colloid Interface Sci. 2012, 366, 120-124. [CrossRef]
  35. Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem 2009, 2, 796-854. [CrossRef]
  36. Jang, D.-I.; Park, S.-J. Influence of nickel oxide on carbon dioxide adsorption behaviors of activated carbons. Fuel 2012, 102, 439-444. [CrossRef]
  37. Anbia, M.; Hoseini, V. Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem. Eng. J. 2012, 191, 326-330. [CrossRef]
  38. Lee, Z.H.; Lee, K.T.; Bhatia, S.; Mohamed, A.R. Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renew. Sustain. Energy Rev. 2012, 16, 2599-2609. [CrossRef]
  39. Chiao, C.-H.; Chen, J.-L.; Lan, C.-R.; Chen, S.; Hsu, H.-W. Development of carbon dioxide capture and storage technology-Taiwan power company perspective. Sustain. Environ. Res. 2011, 21, 1-8.
  40. Li, J.-R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P.B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791-1823. [CrossRef]
  41. Dantas, T.L.P.; Luna, F.M.T.; Silva, I.J., Jr.; Torres, A.E.B.; Azevedo, D.C.S.; Rodrigues, A.E.; Moreira, R.F.P.M. Carbon dioxide- nitrogen separation through pressure swing adsorption. Chem. Eng. J. 2011, 172, 698-704. [CrossRef]
  42. Bolland, P.O.; Nord, P.L.O. Carbon Dioxide Emission Management in Power Generation; Wiley: New York, NY, USA, 2020.
  43. Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130-189. [CrossRef]
  44. Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797-849. [CrossRef]
  45. Kulkarni, A.R.; Sholl, D.S. Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO 2 from Air. Ind. Eng. Chem. Res. 2012, 51, 8631-8645. [CrossRef]
  46. Ritter, J.A. Radically New Adsorption Cycles for Carbon Dioxide Sequestration. In Proceedings of the University Coal Research Contractors Review Meeting, Pittsburgh, PA, USA, 2-3 June 2004.
  47. Yong, Z.; Mata, V.; Rodrigues, A. Adsorption of carbon dioxide at high temperature-A review. Sep. Purif. Technol. 2002, 26, 195-205. [CrossRef]
  48. Lai, J.Y.; Ngu, L.H.; Hashim, S.S. A review of CO 2 adsorbents performance for different carbon capture technology processes conditions. Greenh. Gases Sci. Technol. 2021, 11, 1076-1117. [CrossRef]
  49. Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current status and development of membranes for CO 2 /CH 4 separation: A review. Int. J. Greenh. Gas Control 2013, 12, 84-107. [CrossRef]
  50. Norahim, N.; Yaisanga, P.; Faungnawakij, K.; Charinpanitkul, T.; Klaysom, C. Recent Membrane Developments for CO 2 Separation and Capture. Chem. Eng. Technol. 2018, 41, 211-223. [CrossRef]
  51. Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of ionic liquids with membrane technology: A new approach for CO 2 separation. J. Memb. Sci. 2016, 497, 1-20. [CrossRef]
  52. Ismail, A.F.; Chandra Khulbe, K.; Matsuura, T. Gas Separation Membranes; Springer International Publishing: Cham, Switzerland, 2015.
  53. Bodzek, M.; Konieczny, K.; Kwieci ńska, A. Application of membrane processes in drinking water treatment-state of art. Desalin. Water Treat. 2011, 35, 164-184. [CrossRef]
  54. Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO 2 separation. J. Memb. Sci. 2010, 359, 115-125.
  55. Bodzek, M.; Bohdziewicz, J.; Konieczny, K. Techniki Membranowe W Ochronie Srodowiska; Wydawnictwo Politechniki Slaskiej: Gliwice, Poland, 1997.
  56. Narabska, A. Membranes and Membrane Separation Techniques; UMK Publishing House: Kota Bharu, Malaysia, 1997.
  57. Adewole, J.K.; Ahmad, A.L.; Ismail, S.; Leo, C.P. Current challenges in membrane separation of CO 2 from natural gas: A review. Int. J. Greenh. Gas Control 2013, 17, 46-65. [CrossRef]
  58. Liu, X.; Jin, H.; Li, Y.; Bux, H.; Hu, Z.; Ban, Y.; Yang, W. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation. J. Memb. Sci. 2013, 428, 498-506. [CrossRef]
  59. Zhang, Y.; Wang, R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO 2 absorption in a gas-liquid membrane contactor. J. Memb. Sci. 2014, 452, 379-389. [CrossRef]
  60. Zhang, Y.; Wang, R.; Zhang, L.; Fane, A.G. Novel single-step hydrophobic modification of polymeric hollow fiber membranes containing imide groups: Its potential for membrane contactor application. Sep. Purif. Technol. 2012, 101, 76-84. [CrossRef]
  61. Yan, S.; Fang, M.-X.; Zhang, W.-F.; Wang, S.-Y.; Xu, Z.-K.; Luo, Z.-Y.; Cen, K.-F. Experimental study on the separation of CO 2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process. Technol. 2007, 88, 501-511. [CrossRef]
  62. Ghasem, N.; Al-Marzouqi, M.; Duidar, A. Effect of PVDF concentration on the morphology and performance of hollow fiber membrane employed as gas-liquid membrane contactor for CO 2 absorption. Sep. Purif. Technol. 2012, 98, 174-185. [CrossRef]
  63. Mansourizadeh, A.; Ismail, A.F. A developed asymmetric PVDF hollow fiber membrane structure for CO 2 absorption. Int. J. Greenh. Gas Control 2011, 5, 374-380. [CrossRef]
  64. Tomita, S.; Akatsu, S.; Ohmura, R. Experiments and thermodynamic simulations for continuous separation of CO 2 from CH 4 + CO 2 gas mixture utilizing hydrate formation. Appl. Energy 2015, 146, 104-110. [CrossRef]
  65. He, J.; Liu, Y.; Ma, Z.; Deng, S.; Zhao, R.; Zhao, L. A Literature Research on the Performance Evaluation of Hydrate-based CO 2 Capture and Separation Process. Energy Procedia 2017, 105, 4090-4097. [CrossRef]
  66. Yang, M.; Song, Y.; Jiang, L.; Zhao, Y.; Ruan, X.; Zhang, Y.; Wang, S. Hydrate-based technology for CO 2 capture from fossil fuel power plants. Appl. Energy 2014, 116, 26-40. [CrossRef]
  67. Xia, Z.-M.; Li, X.-S.; Chen, Z.-Y.; Li, G.; Yan, K.-F.; Xu, C.-G.; Lv, Q.-N.; Cai, J. Hydrate-based CO 2 capture and CH 4 purification from simulated biogas with synergic additives based on gas solvent. Appl. Energy 2016, 162, 1153-1159. [CrossRef]
  68. Kumar, A.; Veluswamy, H.P.; Jadhawar, P.; Chapoy, A.; Aman, Z. Gas Hydrates in Man-Made Environments: Applications, Economics, Challenges and Future Directions. In Status and Future Challenges for Non-Conventional Energy Sources Volume 1. Clean Energy Production Technologies; Springer: Singapore, 2022; pp. 173-192.
  69. Sabil, K.M.; Partoon, B. Recent advances on carbon dioxide capture through a hydrate-based gas separation process. Curr. Opin. Green Sustain. Chem. 2018, 11, 22-26. [CrossRef]
  70. Babu, P.; Linga, P.; Kumar, R.; Englezos, P. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261-279. [CrossRef]
  71. Yang, M.; Zhou, H.; Wang, P.; Song, Y. Effects of additives on continuous hydrate-based flue gas separation. Appl. Energy 2018, 221, 374-385. [CrossRef]
  72. Li, L.; Fan, S.; Yang, G.; Chen, Q.; Zhao, J.; Wei, N.; Meng, W.; Fan, J.; Yang, H. Continuous simulation of the separation process of CO2/H2 by forming hydrate. Chem. Eng. Sci. X 2020, 7, 100067. [CrossRef]
  73. Arora, A.; Kumar, A.; Bhattacharjee, G.; Kumar, P.; Balomajumder, C. Effect of different fixed bed media on the performance of sodium dodecyl sulfate for hydrate based CO 2 capture. Mater. Des. 2016, 90, 1186-1191. [CrossRef]
  74. Kumar, A.; Sakpal, T.; Linga, P.; Kumar, R. Impact of Fly Ash Impurity on the Hydrate-Based Gas Separation Process for Carbon Dioxide Capture from a Flue Gas Mixture. Ind. Eng. Chem. Res. 2014, 53, 9849-9859. [CrossRef]
  75. Kumar, A.; Bhattacharjee, G.; Barmecha, V.; Diwan, S.; Kushwaha, O.S. Influence of kinetic and thermodynamic promoters on post-combustion carbon dioxide capture through gas hydrate crystallization. J. Environ. Chem. Eng. 2016, 4, 1955-1961. [CrossRef]
  76. Veluswamy, H.P.; Premasinghe, K.P.; Linga, P. CO 2 Hydrates-Effect of Additives and Operating Conditions on the Morphology and Hydrate Growth. Energy Procedia 2017, 105, 5048-5054. [CrossRef]
  77. Liu, Z.; Zeng, Y.; Wang, W. CO 2 Hydrate Formation Promoted by a Bio-friendly Amino Acid L-Isoleucine. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 052054. [CrossRef]
  78. Singh, A.; Veluswamy, H.P. Investigation of Kinetics of Methane and Carbon Dioxide Hydrates in the Presence of Biobased Additives. Energy Fuels 2022, 36, 14315-14330. [CrossRef]
  79. Ozturk, M.; Panuganti, S.R.; Gong, K.; Cox, K.R.; Vargas, F.M.; Chapman, W.G. Modeling natural gas-carbon dioxide system for solid-liquid-vapor phase behavior. J. Nat. Gas Sci. Eng. 2017, 45, 738-746. [CrossRef]
  80. Göttlicher, G.; Pruschek, R. Comparison of CO 2 removal systems for fossil-fuelled power plant processes. Energy Convers. Manag. 1997, 38, S173-S178. [CrossRef]
  81. Babar, M.; Bustam, M.A.; Ali, A.; Shah Maulud, A.; Shafiq, U.; Mukhtar, A.; Shah, S.N.; Maqsood, K.; Mellon, N.; Shariff, A.M. Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review. Cryogenics 2019, 102, 85-104. [CrossRef]
  82. Tuinier, M.J.; Hamers, H.P.; van Sint Annaland, M. Techno-economic evaluation of cryogenic CO 2 capture-A comparison with absorption and membrane technology. Int. J. Greenh. Gas Control 2011, 5, 1559-1565. [CrossRef]
  83. Mehrpooya, M.; Esfilar, R.; Moosavian, S.M.A. Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO 2 capture. J. Clean. Prod. 2017, 142, 1749-1764. [CrossRef]
  84. De Silva, G.P.D.; Ranjith, P.G.; Perera, M.S.A. Geochemical aspects of CO 2 sequestration in deep saline aquifers: A review. Fuel 2015, 155, 128-143. [CrossRef]
  85. Daneshvar, E.; Wicker, R.J.; Show, P.L.; Bhatnagar, A. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization-A review. Chem. Eng. J. 2022, 427, 130884. [CrossRef]
  86. Hakkarainen, J.; Ialongo, I.; Maksyutov, S.; Crisp, D. Analysis of four years of global XCO 2 anomalies as seen by orbiting carbon observatory-2. Remote Sens. 2019, 11, 850. [CrossRef]
  87. Vieira, É.D.; da Graça Stupiello Andrietta, M.; Andrietta, S.R. Yeast biomass production: A new approach in glucose-limited feeding strategy. Braz. J. Microbiol. 2013, 44, 551-558. [CrossRef]
  88. Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014, 31, 121-132. [CrossRef]
  89. Singh, J.; Gu, S. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 2010, 14, 2596-2610. [CrossRef]
  90. Usui, N.; Ikenouchi, M. The biological CO 2 fixation and utilization project by RITE(1): Highly-effective photobioreactor system. Energy Convers. Manag. 1997, 38, S487-S492. [CrossRef]
  91. Samipour, S.; Ahmadi, A.; Manshadi, M.D.; Setoodeh, P. Challenges in Industrialization of Biological CO 2 Capture; Elsevier Inc.: Amsterdam, The Netherlands, 2020.
  92. Guduru, R.K.; Gupta, A.A.; Dixit, U. Biological Processes for CO 2 Capture; Elsevier Inc.: Amsterdam, The Netherlands, 2022.
  93. Wan, X.; Wang, X.; Wan, T.; Yan, Y.; Ye, Z.; Peng, X. Bio-inspired ferromagnetic graphene oxide/magnetic ionic liquid membrane for highly efficient CO 2 separation. Appl. Mater. Today 2021, 24, 101164. [CrossRef]
  94. Russo, F.; Galiano, F.; Iulianelli, A.; Basile, A.; Figoli, A. Biopolymers for sustainable membranes in CO 2 separation: A review. Fuel Process. Technol. 2021, 213, 106643. [CrossRef]
  95. Douskova, I.; Doucha, J.; Livansky, K.; Machat, J.; Novak, P.; Umysova, D.; Zachleder, V.; Vitova, M. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl. Microbiol. Biotechnol. 2009, 82, 179-185. [CrossRef] [PubMed]
  96. Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. embodied emissions in buildings- A review of current trends. Energy Build. 2013, 66, 232-245. [CrossRef]
  97. Goli, A.; Shamiri, A.; Talaiekhozani, A.; Eshtiaghi, N.; Aghamohammadi, N.; Aroua, M.K. An overview of biological processes and their potential for CO 2 capture. J. Environ. Manage. 2016, 183, 41-58. [CrossRef]
  98. Wyczalek, F. Energy Independence-A Nation Running on Empty. In Proceedings of the 3rd International Energy Conversion Engineering Conference, San Francisco, CA, USA, 15-18 August 2005. [CrossRef]
  99. Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review of Post-combustion CO 2 Capture Technologies from Coal-fired Power Plants. Energy Procedia 2017, 114, 650-665. [CrossRef]
  100. Damen, K.; van Troost, M.; Faaij, A.; Turkenburg, W. A comparison of electricity and hydrogen production systems with CO 2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Prog. Energy Combust. Sci. 2006, 32, 215-246. [CrossRef]
  101. Rubin, E.; Rao, A.; Chen, C. Comparative assessments of fossil fuel power plants with CO 2 capture and storage. In Greenhouse Gas Control Technologies 7; Elsevier: Amsterdam, The Netherlands, 2005; pp. 285-293.
  102. Porter, R.T.J.; Fairweather, M.; Pourkashanian, M.; Woolley, R.M. The range and level of impurities in CO 2 streams from different carbon capture sources. Int. J. Greenh. Gas Control 2015, 36, 161-174. [CrossRef]
  103. Kanniche, M.; Le Moullec, Y.; Authier, O.; Hagi, H.; Bontemps, D.; Neveux, T.; Louis-Louisy, M. Up-to-date CO 2 Capture in Thermal Power Plants. Energy Procedia 2017, 114, 95-103. [CrossRef]
  104. Dillon, D.J.; White, V.; Allam, R.J.; Wall, R.A.; Gibbins, J. Oxy Combustion Processes for CO 2 Capture from Power Plant; Engineering Investigation Report; International Energy Agency (IEA): Paris, France, 2005; Volume 9.
  105. Zheng, L. Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO 2 ) Capture; Woodhead Publishing: Cambridge, UK, 2011.
  106. Hendriks, C. Carbon Dioxide Removal from Coal-Fired Power Plants; Energy & Environment; Springer: Dordrecht, The Netherlands, 1994; Volume 1.
  107. Olabi, A.G.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [CrossRef]
  108. Lyngfelt, A.; Linderholm, C. Chemical-looping Combustion of Solid Fuels-Technology Overview and Recent Operational Results in 100 kW Unit. Energy Procedia 2014, 63, 98-112. [CrossRef]
  109. Rackley, S.A. Introduction. In Carbon Capture and Storage; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3-21.
  110. Gielen, D. The energy policy consequences of future CO 2 capture and sequestration technologies. In Proceedings of the 2nd Annual Conference on Carbon Sequestration, Alexandria, Egypt, 6 May 2003; pp. 5-8.
  111. Audus, H. Leading options for the capture of CO 2 at power stations. In Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies (GHGT-5), Cairns, QLD, Australia, 13-16 August 2000.
  112. Zhang, X.; Song, Z.; Gani, R.; Zhou, T. Comparative Economic Analysis of Physical, Chemical, and Hybrid Absorption Processes for Carbon Capture. Ind. Eng. Chem. Res. 2020, 59, 2005-2012. [CrossRef]
  113. Tuinier, M.J.; van Sint Annaland, M.; Kramer, G.J.; Kuipers, J.A.M. Cryogenic CO 2 capture using dynamically operated packed beds. Chem. Eng. Sci. 2010, 65, 114-119. [CrossRef]
  114. Li, J.; Zhang, H.; Gao, Z.; Fu, J.; Ao, W.; Dai, J. CO 2 Capture with Chemical Looping Combustion of Gaseous Fuels: An Overview. Energy Fuels 2017, 31, 3475-3524. [CrossRef]
  115. Castel, C.; Bounaceur, R.; Favre, E. Membrane Processes for Direct Carbon Dioxide Capture From Air: Possibilities and Limitations. Front. Chem. Eng. 2021, 3, 668867. [CrossRef]
  116. Zhai, H.; Rubin, E.S. The Effects of Membrane-based CO 2 Capture System on Pulverized Coal Power Plant Performance and Cost. Energy Procedia 2013, 37, 1117-1124. [CrossRef]
  117. Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO 2 Util. 2015, 9, 82-102. [CrossRef]
  118. Lyngfelt, A.; Leckner, B. A 1000 MWth boiler for chemical-looping combustion of solid fuels-Discussion of design and costs. Appl. Energy 2015, 157, 475-487. [CrossRef]
  119. Moldenhauer, P.; Linderholm, C.; Rydén, M.; Lyngfelt, A. Avoiding CO 2 capture effort and cost for negative CO 2 emissions using industrial waste in chemical-looping combustion/gasification of biomass. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1-24.
  120. Hong, W.Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO 2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [CrossRef]
  121. Kenarsari, S.D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A.G.; Wei, Q.; Fan, M. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013, 3, 22739. [CrossRef]
  122. Zoccali, M.; Donato, P.; Mondello, L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques. TrAC Trends Anal. Chem. 2019, 116, 158-165. [CrossRef]
  123. Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14-27. [CrossRef]
  124. Zach, B.; Pluskal, J.; Šomplák, R.; Jadrný, J.; Šyc, M. Tool for optimization of energy consumption of membrane-based carbon capture. J. Environ. Manag. 2022, 320, 115913. [CrossRef]
  125. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.