Carbon Dioxide Separation Technologies: Applicable to Net Zero
2023, Energies
https://doi.org/10.3390/EN16104100Abstract
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
References (125)
- International Energy Agency. Global Energy Review: CO 2 Emissions in 2021 Global Emissions Rebound Sharply to Highest Ever Level; International Energy Agency: Paris, France, 2021.
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426-443. [CrossRef]
- Bhown, A.S.; Freeman, B.C. Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies. Environ. Sci. Technol. 2011, 45, 8624-8632. [CrossRef] [PubMed]
- Pandey, G.; Poothia, T.; Kumar, A. Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization. Appl. Energy 2022, 326, 119900. [CrossRef]
- Aaron, D.; Tsouris, C. Separation of CO 2 from Flue Gas: A Review. Sep. Sci. Technol. 2005, 40, 321-348. [CrossRef]
- Takamura, Y.; Aoki, J.; Uchida, S.; Narita, S. Application of high-pressure swing adsorption process for improvement of CO 2 recovery system from flue gas. Can. J. Chem. Eng. 2001, 79, 812-816. [CrossRef]
- Clausse, M.; Merel, J.; Meunier, F. Numerical parametric study on CO 2 capture by indirect thermal swing adsorption. Int. J. Greenh. Gas Control 2011, 5, 1206-1213. [CrossRef]
- Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F. Progress in Chemical-Looping Combustion and Reforming technologies. Prog. Energy Combust. Sci. 2012, 38, 215-282. [CrossRef]
- Erlach, B.; Schmidt, M.; Tsatsaronis, G. Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. Energy 2011, 36, 3804-3815. [CrossRef]
- Wong, S.; Bioletti, R. Carbon Dioxide Separation Technologies. Available online: http://www.ipcc.ch/ (accessed on 23 November 2022).
- Songolzadeh, M.; Soleimani, M.; Takht Ravanchi, M.; Songolzadeh, R. Carbon Dioxide Separation from Flue Gases: A Technologi- cal Review Emphasizing Reduction in Greenhouse Gas Emissions. Sci. World J. 2014, 2014, 828131. [CrossRef]
- Simpson, A.P.; Simon, A.J. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Convers. Manag. 2007, 48, 3034-3045. [CrossRef]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO 2 capture/separation technologies: A review. Energy 2012, 46, 431-441. [CrossRef]
- Rackley, S.A. Absorption capture systems. In Carbon Capture and Storage, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 151-185.
- Sifat, N.S.; Haseli, Y. A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation. Energies 2019, 12, 4143. [CrossRef]
- Theo, W.L.; Lim, J.S.; Hashim, H.; Mustaffa, A.A.; Ho, W.S. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl. Energy 2016, 183, 1633-1663. [CrossRef]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO 2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745-769. [CrossRef]
- Jansen, D.; Gazzani, M.; Manzolini, G.; van Dijk, E.; Carbo, M. Pre-combustion CO 2 capture. Int. J. Greenh. Gas Control 2015, 40, 167-187. [CrossRef]
- Figueroa, J.D.; Fout, T.; Plasynski, S.I.; McIlvried, H.; Srivastava, R.D. Advances in CO 2 Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program. Int. J. Greenh. Gas Control 2008, 2, 9-20. [CrossRef]
- Kim, Y.-S.; Yang, S.-M. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Sep. Purif. Technol. 2000, 21, 101-109. [CrossRef]
- Lee, S.C.; Choi, B.Y.; Lee, T.J.; Ryu, C.K.; Ahn, Y.S.; Kim, J.C. CO 2 absorption and regeneration of alkali metal-based solid sorbents. Catal. Today 2006, 111, 385-390. [CrossRef]
- Hu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenh. Gas Control 2016, 53, 28-40. [CrossRef]
- Bosch, H.; Versteeg, G.F.; Van Swaaij, W.P.M. Kinetics of the reaction of CO 2 with the sterically hindered amine 2-Amino-2- methylpropanol at 298 K. Chem. Eng. Sci. 1990, 45, 1167-1173. [CrossRef]
- Shrier, A.L.; Danckwerts, P.V. Carbon Dioxide Absorption into Amine-Promoted Potash Solutions. Ind. Eng. Chem. Fundam. 1969, 8, 415-423. [CrossRef]
- Feron, P.H.; Jansen, A. The production of carbon dioxide from flue gas by membrane gas absorption. Energy Convers. Manag. 1997, 38, S93-S98. [CrossRef]
- Bougie, F.; Iliuta, M.C. CO 2 Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling. J. Chem. Eng. Data 2011, 56, 1547-1554. [CrossRef]
- Fredriksen, S.B.; Jens, K.-J. Oxidative Degradation of Aqueous Amine Solutions of MEA, AMP, MDEA, Pz: A Review. Energy Procedia 2013, 37, 1770-1777. [CrossRef]
- da Silva, C.F.N.; Dias, A.P.B.; Santana, A.P.R.; Pizzo, J.S.; de Souza, F.M.; Lazarin, A.M.; Sernaglia, R.L.; Andreotti, E.I.S. Retraction: Intercalation of Amines into Layered Calcium Phosphate and Their New Behavior for Copper Retention from Ethanolic Solution. Open J. Synth. Theory Appl. 2013, 2, 1-7. [CrossRef]
- Kozak, F.; Petig, A.; Morris, E.; Rhudy, R.; Thimsen, D. Chilled ammonia process for CO 2 capture. Energy Procedia 2009, 1, 1419-1426. [CrossRef]
- Songolzadeh, M.; Ravanchi, M.T.; Soleimani, M. Carbon Dioxide Capture and Storage: A General Review on Adsorbents. Int. J. Chem. Mol. Eng. 2012, 6, 906-913. [CrossRef]
- Meisen, A.; Shuai, X. Research and development issues in CO 2 capture. Energy Convers. Manag. 1997, 38, S37-S42. [CrossRef]
- Liu, H.; Liu, B.; Lin, L.-C.; Chen, G.; Wu, Y.; Wang, J.; Gao, X.; Lv, Y.; Pan, Y.; Zhang, X.; et al. A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 2014, 5, 5147. [CrossRef]
- Mishra, A.K.; Ramaprabhu, S. Palladium nanoparticles decorated graphite nanoplatelets for room temperature carbon dioxide adsorption. Chem. Eng. J. 2012, 187, 10-15. [CrossRef]
- Abid, H.R.; Pham, G.H.; Ang, H.-M.; Tade, M.O.; Wang, S. Adsorption of CH 4 and CO 2 on Zr-metal organic frameworks. J. Colloid Interface Sci. 2012, 366, 120-124. [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem 2009, 2, 796-854. [CrossRef]
- Jang, D.-I.; Park, S.-J. Influence of nickel oxide on carbon dioxide adsorption behaviors of activated carbons. Fuel 2012, 102, 439-444. [CrossRef]
- Anbia, M.; Hoseini, V. Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem. Eng. J. 2012, 191, 326-330. [CrossRef]
- Lee, Z.H.; Lee, K.T.; Bhatia, S.; Mohamed, A.R. Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renew. Sustain. Energy Rev. 2012, 16, 2599-2609. [CrossRef]
- Chiao, C.-H.; Chen, J.-L.; Lan, C.-R.; Chen, S.; Hsu, H.-W. Development of carbon dioxide capture and storage technology-Taiwan power company perspective. Sustain. Environ. Res. 2011, 21, 1-8.
- Li, J.-R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P.B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791-1823. [CrossRef]
- Dantas, T.L.P.; Luna, F.M.T.; Silva, I.J., Jr.; Torres, A.E.B.; Azevedo, D.C.S.; Rodrigues, A.E.; Moreira, R.F.P.M. Carbon dioxide- nitrogen separation through pressure swing adsorption. Chem. Eng. J. 2011, 172, 698-704. [CrossRef]
- Bolland, P.O.; Nord, P.L.O. Carbon Dioxide Emission Management in Power Generation; Wiley: New York, NY, USA, 2020.
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130-189. [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797-849. [CrossRef]
- Kulkarni, A.R.; Sholl, D.S. Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO 2 from Air. Ind. Eng. Chem. Res. 2012, 51, 8631-8645. [CrossRef]
- Ritter, J.A. Radically New Adsorption Cycles for Carbon Dioxide Sequestration. In Proceedings of the University Coal Research Contractors Review Meeting, Pittsburgh, PA, USA, 2-3 June 2004.
- Yong, Z.; Mata, V.; Rodrigues, A. Adsorption of carbon dioxide at high temperature-A review. Sep. Purif. Technol. 2002, 26, 195-205. [CrossRef]
- Lai, J.Y.; Ngu, L.H.; Hashim, S.S. A review of CO 2 adsorbents performance for different carbon capture technology processes conditions. Greenh. Gases Sci. Technol. 2021, 11, 1076-1117. [CrossRef]
- Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current status and development of membranes for CO 2 /CH 4 separation: A review. Int. J. Greenh. Gas Control 2013, 12, 84-107. [CrossRef]
- Norahim, N.; Yaisanga, P.; Faungnawakij, K.; Charinpanitkul, T.; Klaysom, C. Recent Membrane Developments for CO 2 Separation and Capture. Chem. Eng. Technol. 2018, 41, 211-223. [CrossRef]
- Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of ionic liquids with membrane technology: A new approach for CO 2 separation. J. Memb. Sci. 2016, 497, 1-20. [CrossRef]
- Ismail, A.F.; Chandra Khulbe, K.; Matsuura, T. Gas Separation Membranes; Springer International Publishing: Cham, Switzerland, 2015.
- Bodzek, M.; Konieczny, K.; Kwieci ńska, A. Application of membrane processes in drinking water treatment-state of art. Desalin. Water Treat. 2011, 35, 164-184. [CrossRef]
- Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO 2 separation. J. Memb. Sci. 2010, 359, 115-125.
- Bodzek, M.; Bohdziewicz, J.; Konieczny, K. Techniki Membranowe W Ochronie Srodowiska; Wydawnictwo Politechniki Slaskiej: Gliwice, Poland, 1997.
- Narabska, A. Membranes and Membrane Separation Techniques; UMK Publishing House: Kota Bharu, Malaysia, 1997.
- Adewole, J.K.; Ahmad, A.L.; Ismail, S.; Leo, C.P. Current challenges in membrane separation of CO 2 from natural gas: A review. Int. J. Greenh. Gas Control 2013, 17, 46-65. [CrossRef]
- Liu, X.; Jin, H.; Li, Y.; Bux, H.; Hu, Z.; Ban, Y.; Yang, W. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation. J. Memb. Sci. 2013, 428, 498-506. [CrossRef]
- Zhang, Y.; Wang, R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO 2 absorption in a gas-liquid membrane contactor. J. Memb. Sci. 2014, 452, 379-389. [CrossRef]
- Zhang, Y.; Wang, R.; Zhang, L.; Fane, A.G. Novel single-step hydrophobic modification of polymeric hollow fiber membranes containing imide groups: Its potential for membrane contactor application. Sep. Purif. Technol. 2012, 101, 76-84. [CrossRef]
- Yan, S.; Fang, M.-X.; Zhang, W.-F.; Wang, S.-Y.; Xu, Z.-K.; Luo, Z.-Y.; Cen, K.-F. Experimental study on the separation of CO 2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process. Technol. 2007, 88, 501-511. [CrossRef]
- Ghasem, N.; Al-Marzouqi, M.; Duidar, A. Effect of PVDF concentration on the morphology and performance of hollow fiber membrane employed as gas-liquid membrane contactor for CO 2 absorption. Sep. Purif. Technol. 2012, 98, 174-185. [CrossRef]
- Mansourizadeh, A.; Ismail, A.F. A developed asymmetric PVDF hollow fiber membrane structure for CO 2 absorption. Int. J. Greenh. Gas Control 2011, 5, 374-380. [CrossRef]
- Tomita, S.; Akatsu, S.; Ohmura, R. Experiments and thermodynamic simulations for continuous separation of CO 2 from CH 4 + CO 2 gas mixture utilizing hydrate formation. Appl. Energy 2015, 146, 104-110. [CrossRef]
- He, J.; Liu, Y.; Ma, Z.; Deng, S.; Zhao, R.; Zhao, L. A Literature Research on the Performance Evaluation of Hydrate-based CO 2 Capture and Separation Process. Energy Procedia 2017, 105, 4090-4097. [CrossRef]
- Yang, M.; Song, Y.; Jiang, L.; Zhao, Y.; Ruan, X.; Zhang, Y.; Wang, S. Hydrate-based technology for CO 2 capture from fossil fuel power plants. Appl. Energy 2014, 116, 26-40. [CrossRef]
- Xia, Z.-M.; Li, X.-S.; Chen, Z.-Y.; Li, G.; Yan, K.-F.; Xu, C.-G.; Lv, Q.-N.; Cai, J. Hydrate-based CO 2 capture and CH 4 purification from simulated biogas with synergic additives based on gas solvent. Appl. Energy 2016, 162, 1153-1159. [CrossRef]
- Kumar, A.; Veluswamy, H.P.; Jadhawar, P.; Chapoy, A.; Aman, Z. Gas Hydrates in Man-Made Environments: Applications, Economics, Challenges and Future Directions. In Status and Future Challenges for Non-Conventional Energy Sources Volume 1. Clean Energy Production Technologies; Springer: Singapore, 2022; pp. 173-192.
- Sabil, K.M.; Partoon, B. Recent advances on carbon dioxide capture through a hydrate-based gas separation process. Curr. Opin. Green Sustain. Chem. 2018, 11, 22-26. [CrossRef]
- Babu, P.; Linga, P.; Kumar, R.; Englezos, P. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261-279. [CrossRef]
- Yang, M.; Zhou, H.; Wang, P.; Song, Y. Effects of additives on continuous hydrate-based flue gas separation. Appl. Energy 2018, 221, 374-385. [CrossRef]
- Li, L.; Fan, S.; Yang, G.; Chen, Q.; Zhao, J.; Wei, N.; Meng, W.; Fan, J.; Yang, H. Continuous simulation of the separation process of CO2/H2 by forming hydrate. Chem. Eng. Sci. X 2020, 7, 100067. [CrossRef]
- Arora, A.; Kumar, A.; Bhattacharjee, G.; Kumar, P.; Balomajumder, C. Effect of different fixed bed media on the performance of sodium dodecyl sulfate for hydrate based CO 2 capture. Mater. Des. 2016, 90, 1186-1191. [CrossRef]
- Kumar, A.; Sakpal, T.; Linga, P.; Kumar, R. Impact of Fly Ash Impurity on the Hydrate-Based Gas Separation Process for Carbon Dioxide Capture from a Flue Gas Mixture. Ind. Eng. Chem. Res. 2014, 53, 9849-9859. [CrossRef]
- Kumar, A.; Bhattacharjee, G.; Barmecha, V.; Diwan, S.; Kushwaha, O.S. Influence of kinetic and thermodynamic promoters on post-combustion carbon dioxide capture through gas hydrate crystallization. J. Environ. Chem. Eng. 2016, 4, 1955-1961. [CrossRef]
- Veluswamy, H.P.; Premasinghe, K.P.; Linga, P. CO 2 Hydrates-Effect of Additives and Operating Conditions on the Morphology and Hydrate Growth. Energy Procedia 2017, 105, 5048-5054. [CrossRef]
- Liu, Z.; Zeng, Y.; Wang, W. CO 2 Hydrate Formation Promoted by a Bio-friendly Amino Acid L-Isoleucine. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 052054. [CrossRef]
- Singh, A.; Veluswamy, H.P. Investigation of Kinetics of Methane and Carbon Dioxide Hydrates in the Presence of Biobased Additives. Energy Fuels 2022, 36, 14315-14330. [CrossRef]
- Ozturk, M.; Panuganti, S.R.; Gong, K.; Cox, K.R.; Vargas, F.M.; Chapman, W.G. Modeling natural gas-carbon dioxide system for solid-liquid-vapor phase behavior. J. Nat. Gas Sci. Eng. 2017, 45, 738-746. [CrossRef]
- Göttlicher, G.; Pruschek, R. Comparison of CO 2 removal systems for fossil-fuelled power plant processes. Energy Convers. Manag. 1997, 38, S173-S178. [CrossRef]
- Babar, M.; Bustam, M.A.; Ali, A.; Shah Maulud, A.; Shafiq, U.; Mukhtar, A.; Shah, S.N.; Maqsood, K.; Mellon, N.; Shariff, A.M. Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review. Cryogenics 2019, 102, 85-104. [CrossRef]
- Tuinier, M.J.; Hamers, H.P.; van Sint Annaland, M. Techno-economic evaluation of cryogenic CO 2 capture-A comparison with absorption and membrane technology. Int. J. Greenh. Gas Control 2011, 5, 1559-1565. [CrossRef]
- Mehrpooya, M.; Esfilar, R.; Moosavian, S.M.A. Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO 2 capture. J. Clean. Prod. 2017, 142, 1749-1764. [CrossRef]
- De Silva, G.P.D.; Ranjith, P.G.; Perera, M.S.A. Geochemical aspects of CO 2 sequestration in deep saline aquifers: A review. Fuel 2015, 155, 128-143. [CrossRef]
- Daneshvar, E.; Wicker, R.J.; Show, P.L.; Bhatnagar, A. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization-A review. Chem. Eng. J. 2022, 427, 130884. [CrossRef]
- Hakkarainen, J.; Ialongo, I.; Maksyutov, S.; Crisp, D. Analysis of four years of global XCO 2 anomalies as seen by orbiting carbon observatory-2. Remote Sens. 2019, 11, 850. [CrossRef]
- Vieira, É.D.; da Graça Stupiello Andrietta, M.; Andrietta, S.R. Yeast biomass production: A new approach in glucose-limited feeding strategy. Braz. J. Microbiol. 2013, 44, 551-558. [CrossRef]
- Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014, 31, 121-132. [CrossRef]
- Singh, J.; Gu, S. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 2010, 14, 2596-2610. [CrossRef]
- Usui, N.; Ikenouchi, M. The biological CO 2 fixation and utilization project by RITE(1): Highly-effective photobioreactor system. Energy Convers. Manag. 1997, 38, S487-S492. [CrossRef]
- Samipour, S.; Ahmadi, A.; Manshadi, M.D.; Setoodeh, P. Challenges in Industrialization of Biological CO 2 Capture; Elsevier Inc.: Amsterdam, The Netherlands, 2020.
- Guduru, R.K.; Gupta, A.A.; Dixit, U. Biological Processes for CO 2 Capture; Elsevier Inc.: Amsterdam, The Netherlands, 2022.
- Wan, X.; Wang, X.; Wan, T.; Yan, Y.; Ye, Z.; Peng, X. Bio-inspired ferromagnetic graphene oxide/magnetic ionic liquid membrane for highly efficient CO 2 separation. Appl. Mater. Today 2021, 24, 101164. [CrossRef]
- Russo, F.; Galiano, F.; Iulianelli, A.; Basile, A.; Figoli, A. Biopolymers for sustainable membranes in CO 2 separation: A review. Fuel Process. Technol. 2021, 213, 106643. [CrossRef]
- Douskova, I.; Doucha, J.; Livansky, K.; Machat, J.; Novak, P.; Umysova, D.; Zachleder, V.; Vitova, M. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl. Microbiol. Biotechnol. 2009, 82, 179-185. [CrossRef] [PubMed]
- Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. embodied emissions in buildings- A review of current trends. Energy Build. 2013, 66, 232-245. [CrossRef]
- Goli, A.; Shamiri, A.; Talaiekhozani, A.; Eshtiaghi, N.; Aghamohammadi, N.; Aroua, M.K. An overview of biological processes and their potential for CO 2 capture. J. Environ. Manage. 2016, 183, 41-58. [CrossRef]
- Wyczalek, F. Energy Independence-A Nation Running on Empty. In Proceedings of the 3rd International Energy Conversion Engineering Conference, San Francisco, CA, USA, 15-18 August 2005. [CrossRef]
- Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review of Post-combustion CO 2 Capture Technologies from Coal-fired Power Plants. Energy Procedia 2017, 114, 650-665. [CrossRef]
- Damen, K.; van Troost, M.; Faaij, A.; Turkenburg, W. A comparison of electricity and hydrogen production systems with CO 2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Prog. Energy Combust. Sci. 2006, 32, 215-246. [CrossRef]
- Rubin, E.; Rao, A.; Chen, C. Comparative assessments of fossil fuel power plants with CO 2 capture and storage. In Greenhouse Gas Control Technologies 7; Elsevier: Amsterdam, The Netherlands, 2005; pp. 285-293.
- Porter, R.T.J.; Fairweather, M.; Pourkashanian, M.; Woolley, R.M. The range and level of impurities in CO 2 streams from different carbon capture sources. Int. J. Greenh. Gas Control 2015, 36, 161-174. [CrossRef]
- Kanniche, M.; Le Moullec, Y.; Authier, O.; Hagi, H.; Bontemps, D.; Neveux, T.; Louis-Louisy, M. Up-to-date CO 2 Capture in Thermal Power Plants. Energy Procedia 2017, 114, 95-103. [CrossRef]
- Dillon, D.J.; White, V.; Allam, R.J.; Wall, R.A.; Gibbins, J. Oxy Combustion Processes for CO 2 Capture from Power Plant; Engineering Investigation Report; International Energy Agency (IEA): Paris, France, 2005; Volume 9.
- Zheng, L. Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO 2 ) Capture; Woodhead Publishing: Cambridge, UK, 2011.
- Hendriks, C. Carbon Dioxide Removal from Coal-Fired Power Plants; Energy & Environment; Springer: Dordrecht, The Netherlands, 1994; Volume 1.
- Olabi, A.G.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [CrossRef]
- Lyngfelt, A.; Linderholm, C. Chemical-looping Combustion of Solid Fuels-Technology Overview and Recent Operational Results in 100 kW Unit. Energy Procedia 2014, 63, 98-112. [CrossRef]
- Rackley, S.A. Introduction. In Carbon Capture and Storage; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3-21.
- Gielen, D. The energy policy consequences of future CO 2 capture and sequestration technologies. In Proceedings of the 2nd Annual Conference on Carbon Sequestration, Alexandria, Egypt, 6 May 2003; pp. 5-8.
- Audus, H. Leading options for the capture of CO 2 at power stations. In Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies (GHGT-5), Cairns, QLD, Australia, 13-16 August 2000.
- Zhang, X.; Song, Z.; Gani, R.; Zhou, T. Comparative Economic Analysis of Physical, Chemical, and Hybrid Absorption Processes for Carbon Capture. Ind. Eng. Chem. Res. 2020, 59, 2005-2012. [CrossRef]
- Tuinier, M.J.; van Sint Annaland, M.; Kramer, G.J.; Kuipers, J.A.M. Cryogenic CO 2 capture using dynamically operated packed beds. Chem. Eng. Sci. 2010, 65, 114-119. [CrossRef]
- Li, J.; Zhang, H.; Gao, Z.; Fu, J.; Ao, W.; Dai, J. CO 2 Capture with Chemical Looping Combustion of Gaseous Fuels: An Overview. Energy Fuels 2017, 31, 3475-3524. [CrossRef]
- Castel, C.; Bounaceur, R.; Favre, E. Membrane Processes for Direct Carbon Dioxide Capture From Air: Possibilities and Limitations. Front. Chem. Eng. 2021, 3, 668867. [CrossRef]
- Zhai, H.; Rubin, E.S. The Effects of Membrane-based CO 2 Capture System on Pulverized Coal Power Plant Performance and Cost. Energy Procedia 2013, 37, 1117-1124. [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO 2 Util. 2015, 9, 82-102. [CrossRef]
- Lyngfelt, A.; Leckner, B. A 1000 MWth boiler for chemical-looping combustion of solid fuels-Discussion of design and costs. Appl. Energy 2015, 157, 475-487. [CrossRef]
- Moldenhauer, P.; Linderholm, C.; Rydén, M.; Lyngfelt, A. Avoiding CO 2 capture effort and cost for negative CO 2 emissions using industrial waste in chemical-looping combustion/gasification of biomass. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1-24.
- Hong, W.Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO 2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [CrossRef]
- Kenarsari, S.D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A.G.; Wei, Q.; Fan, M. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013, 3, 22739. [CrossRef]
- Zoccali, M.; Donato, P.; Mondello, L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques. TrAC Trends Anal. Chem. 2019, 116, 158-165. [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14-27. [CrossRef]
- Zach, B.; Pluskal, J.; Šomplák, R.; Jadrný, J.; Šyc, M. Tool for optimization of energy consumption of membrane-based carbon capture. J. Environ. Manag. 2022, 320, 115913. [CrossRef]
- Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.