Psitrum: An Open Source Simulator for Universal Quantum Computers
2022
https://doi.org/10.21203/RS.3.RS-1483765/V1Abstract
Quantum computing is a radical new paradigm for a technology that is capable to revolutionize information processing. Simulators of universal quantum computer are important for understanding the basic principles and operations of the current noisy intermediate-scale quantum (NISQ) processors, and for building in future fault-tolerant quantum computers. In this work, we present simulation of universal quantum computers by introducing Psitrum – a universal gate-model quantum computer simulator implemented on classical hardware. The simulator allows to emulate and debug quantum algorithms in form of quantum circuits for many applications with the choice of adding variety of noise modules to simulate decoherence in quantum circuits. Psitrum allows to simulate all basic quantum operations and provides variety of visualization tools. The simulator allows to trace out all possible quantum states at each stage M of an N-qubit implemented quantum circuit. Psitrum software and source codes ar...
References (65)
- Steane, A. Quantum computing. Reports on Prog. Phys. 61, 117 (1998).
- Ryan, C., Negrevergne, C., Laforest, M., Knill, E. & Laflamme, R. Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods. Phys. Rev. A 78, 012328 (2008).
- Berry, D. W., Ahokas, G., Cleve, R. & Sanders, B. C. Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270, 359-371 (2007).
- Benenti, G., Casati, G., Montangero, S. & Shepelyansky, D. L. Efficient quantum computing of complex dynamics. Phys. Rev. Lett. 87, 227901 (2001).
- Buluta, I. & Nori, F. Quantum simulators. Science 326, 108-111 (2009).
- Brylinski, J.-L. & Brylinski, R. Universal quantum gates. In Mathematics of quantum computation, 117-134 (Chapman and Hall/CRC, 2002).
- Roushan, P. et al. Observation of topological transitions in interacting quantum circuits. Nature 515, 241-244 (2014).
- Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. physics 8, 285-291 (2012).
- Manin, Y. Computable and uncomputable. Sovetskoye Radio, Mosc. 128 (1980).
- Feynman, R. P. Simulating physics with computers. In Feynman and computation, 133-153 (CRC Press, 2018).
- Nakahara, M. Quantum computing: from linear algebra to physical realizations (CRC press, 2008).
- Li, S.-S., Long, G.-L., Bai, F.-S., Feng, S.-L. & Zheng, H.-Z. Quantum computing. Proc. Natl. Acad. Sci. 98, 11847-11848 (2001).
- Britton, J. W. et al. Engineered two-dimensional ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489-492 (2012).
- Jones, N. C. et al. Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012).
- Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789-793 (2001).
- Buluta, I. & Nori, F. Quantum simulators. Science 326, 108-111 (2009).
- De Raedt, K. et al. Massively parallel quantum computer simulator. Comput. Phys. Commun. 176, 121-136 (2007).
- Obenland, K. M. & Despain, A. M. A parallel quantum computer simulator. arXiv preprint quant-ph/9804039 (1998).
- Deutsch, D. Quantum theory, the church-turing principle and the universal quantum computer. Proc. Royal Soc. London. A. Math. Phys. Sci. 400, 97-117 (1985).
- Fortnow, L. One complexity theorist's view of quantum computing. Electron. Notes Theor. Comput. Sci. 31, 58-72 (2000).
- Preskill, J. Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018).
- Murali, P., McKay, D. C., Martonosi, M. & Javadi-Abhari, A. Software mitigation of crosstalk on noisy intermediate- scale quantum computers. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, 1001-1016 (2020).
- Karafyllidis, I. G. Quantum computer simulator based on the circuit model of quantum computation. IEEE Transactions on Circuits Syst. I: Regul. Pap. 52, 1590-1596 (2005).
- Khammassi, N., Ashraf, I., Fu, X., Almudever, C. G. & Bertels, K. Qx: A high-performance quantum computer simulation platform. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, 464-469 (IEEE, 2017).
- Guzik, V., Gushanskiy, S., Polenov, M. & Potapov, V. Models of a quantum computer, their characteristics and analysis. In 2015 9th International Conference on Application of Information and Communication Technologies (AICT), 583-587 (IEEE, 2015).
- Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505-510 (2019).
- Ball, P. Google moves closer to a universal quantum computer. Nat. News (2016).
- Cross, A. The ibm q experience and qiskit open-source quantum computing software. In APS March Meeting Abstracts, vol. 2018, L58-003 (2018).
- Hastings, M. B., Wecker, D., Bauer, B. & Troyer, M. Improving quantum algorithms for quantum chemistry. arXiv preprint arXiv:1403.1539 (2014).
- Steiger, D. S., Häner, T. & Troyer, M. Projectq: an open source software framework for quantum computing. Quantum 2, 49 (2018).
- Liu, W. et al. An optimized quantum minimum searching algorithm with sure-success probability and its experiment simulation with cirq. J. Ambient Intell. Humaniz. Comput. 1-10 (2021).
- Guerreschi, G. G., Hogaboam, J., Baruffa, F. & Sawaya, N. P. Intel quantum simulator: A cloud-ready high-performance simulator of quantum circuits. Quantum Sci. Technol. 5, 034007 (2020).
- Jones, T., Brown, A., Bush, I. & Benjamin, S. C. Quest and high performance simulation of quantum computers. Sci. reports 9, 1-11 (2019).
- Wu, S. L. et al. Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the lhc on ibm quantum computer simulator and hardware with 10 qubits. J. Phys. G: Nucl. Part. Phys. (2021).
- Gidney, C. Quirk quantum circuit simulator. A drag-and-drop quantum circuit simulator. URL: https://algassert. com/quirk (2016).
- Zhou, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of quantum computers? Phys. Rev. X 10, 041038 (2020).
- Zalka, C. Efficient simulation of quantum systems by quantum computers. Fortschritte der Physik: Prog. Phys. 46, 877-879 (1998).
- Verstraete, F., Dehaene, J., De Moor, B. & Verschelde, H. Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002).
- Avron, J. E., Bisker, G. & Kenneth, O. Visualizing two qubits. J. mathematical physics 48, 102107 (2007).
- Yepez, J. Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4, 471-509 (2005).
- Huggins, W., Patil, P., Mitchell, B., Whaley, K. B. & Stoudenmire, E. M. Towards quantum machine learning with tensor networks. Quantum Sci. technology 4, 024001 (2019).
- Maciejewski, F. B., Zimborás, Z. & Oszmaniec, M. Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography. Quantum 4, 257 (2020).
- Nachman, B., Urbanek, M., de Jong, W. A. & Bauer, C. W. Unfolding quantum computer readout noise. npj Quantum Inf. 6, 1-7 (2020).
- Gutiérrez, M., Smith, C., Lulushi, L., Janardan, S. & Brown, K. R. Errors and pseudothresholds for incoherent and coherent noise. Phys. Rev. A 94, 042338 (2016).
- Wood, C. J. & Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 97, 032306 (2018).
- Urbanek, M. et al. Mitigating depolarizing noise on quantum computers with noise-estimation circuits. arXiv preprint arXiv:2103.08591 (2021).
- Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).
- Cai, Z., Xu, X. & Benjamin, S. C. Mitigating coherent noise using pauli conjugation. npj Quantum Inf. 6, 1-9 (2020).
- Cai, Z., Xu, X. & Benjamin, S. C. Mitigating coherent noise using pauli conjugation. npj Quantum Inf. 6, 1-9 (2020).
- Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390-393 (1999).
- Gilbert, J. R., Moler, C. & Schreiber, R. Sparse matrices in matlab: Design and implementation. SIAM journal on matrix analysis applications 13, 333-356 (1992).
- Nielsen, M. A. & Chuang, I. Quantum computation and quantum information (2002).
- Bertels, K. et al. Quantum computer architecture: Towards full-stack quantum accelerators. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1-6 (IEEE, 2020).
- Frey, V. et al. Programming the full stack of an open-access quantum computer. arXiv preprint arXiv:2106.06549 (2021).
- Bassman, L., Powers, C. & de Jong, W. A. Arqtic: A full-stack software package for simulating materials on quantum computers. arXiv preprint arXiv:2106.04749 (2021).
- Fingerhuth, M., Babej, T. & Wittek, P. Open source software in quantum computing. PloS one 13, e0208561 (2018).
- Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. Phys. Today 54, 60 (2001).
- Cheng, K.-W. & Tseng, C.-C. Quantum full adder and subtractor. Electron. Lett. 38, 1343-1344 (2002).
- Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. Royal Soc. London. Ser. A: Math. Phys. Sci. 439, 553-558 (1992).
- Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 212-219 (1996).
- Selvarajan, R., Dixit, V., Cui, X., Humble, T. S. & Kais, S. Prime factorization using quantum variational imaginary time evolution. Sci. reports 11, 1-8 (2021).
- Seyedi, S. & Navimipour, N. J. An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243-256 (2018).
- Gulde, S. et al. Implementation of the deutsch-jozsa algorithm on an ion-trap quantum computer. Nature 421, 48-50 (2003).
- Jones, J. A., Mosca, M. & Hansen, R. H. Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344-346 (1998).
- Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review 41, 303-332 (1999).