Academia.eduAcademia.edu

Outline

Dynamics of particles in the steady flows of an inviscid fluid

1993, Chaos

https://doi.org/10.1063/1.165943

Abstract

Advection of small particles with inertia in two-dimensional ideal flows is studied both numerically and analytically. It is assumed that the flow disturbance around the particle corresponds to a potential dipole, so that the motion is driven by pressure gradient, inertial, and added-mass forces. It is found that in general the motion is nonintegrable, but particular exact solutions can be obtained. The problem is then studied for the cases of axisymmetric flow, when the motion proves to be completely integrable, and of a cellular flow, for which both regular and stochastic (bounded and unbounded) trajectories are calculated. In the latter case, the unbounded stochastic motion is of Brownian-like character, and the results derived show that the particle dispersion process is generally anomalous.

References (14)

  1. IH. Aref, PhiIos. Trans. R. Soc. London Sec. A 333, 273 (1990).
  2. R. Maxey, Philos. Trans. R. Soc. London Sec. A 333, 289 (1990).
  3. A. Cristiani, M. Falcioni. A. Provenzale, and A. Vulpiani. Phys. Leu. A 150,79 (1990).
  4. A. Cristiani, M. Falcioni, A. Provenzale. P. Tanga, and A. Vulpiani, Phys. Fluids A 4, 1805 (1992).
  5. P. Wang, M. R. Maxey, T. D. Burton, and D. E. Stock, Phys. Fluids A 4, 1789 (1992).
  6. M. R. Maxey and J. J. Riley, Phys. Fluids 26, 883 (1983).
  7. A. Ostrovsky, Fiz. Atm. Oceana 26, 1307 (1990) (in Russian).
  8. 8L, D. Landau and E. M. Lifshits, Fluid Mechanics (Pergamon, Oxford, 1987).
  9. R. Auton, J. C. R. Hunt, and M, Prudhomme, J, Fluid Mech, 197, 241 (1988).
  10. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, Berlin, 1983).
  11. IIH, Lamb Hydrodynamics, 7th ed, (Cambridge University Press, Cam- bridge, 1975).
  12. 12E, Hairer, S, P. N0rsett, and G. Wanner, Solving Ordinary Differential Equations: Nonstiff Problems (Springer-Verlag, Berlin, 1989),
  13. Dambre, U. Frisch, J. M. Greene, M. Henan, A. Mehr, and A. M. Soward, J. Fluid Mech. 167, 353 (1986).
  14. A. A. Chemikov, A. I. Neishtadt, A. V. Rogal'sky, and V, Z. Yakhnin, Chaos 1, 206 (1991).