On Solutions of Generalized Fractional Kinetic Equations
2014, Boletim da Sociedade Paranaense de Matemática
Abstract
In this paper, we derive the solution of generalized fractional kinetic equation involving the generalized Lauricella functions. The result obtained here is quite general in nature and capable of yielding a very
References (37)
- Agarwal, R.P.: A propos d'une note de M.Pierre Humbert, C.R. Acad. Sci. Paris 236, 2031-2032 (1953).
- M. A. Asiru: Sumudu transform and the solution of integral equations of convolution type, International J. Math. Edu. Sci. Tech., 32(6), 906-910, 2001.
- M. A. Asiru, Further properties of the Sumudu transform and its appli- cations, International J. Math. Edu. Sci. Tech., 33(3), 441-449, 2002.
- Belgacem, F.B.M.: Introducing and Analyzing Deeper Sumudu Proper- ties, Nonlinear Studies, Vol. 13, No. 1, (2006).
- Belgacem, F.B.M.: Sumudu Applications to Maxwell's Equations, PIERS Online, Vol. 5, No. 4, 355-360 ( 2009).
- Belgacem, F.B.M.: Sumudu Transform Applications to Bessal Functions and Applications, Appl. Math. Sci., Vol. 4, No. 74, 3665-3686 (2010).
- Clayton, D.D.: Principles of Steller Evolution and Nucleosynthesis, 2nd ed. CityChicago : Chicago Univ. Chicago Press (1983).
- Erdélyi, A. Magnus, W. Oberhettinger F., Tricomi, F.G.: Higher Tran- scendental Functions, Vol.1. McGraw-Hill, New York-Toronto-London (1953).
- Erdélyi, A. Magnus, W. Oberhettinger F., Tricomi, F.G.: Tables of Inte- gral Transform, Vol.1. McGraw-Hill, New York-Toronto-London (1954).
- Erdélyi, A. Magnus, W. Oberhettinger F., Tricomi, F.G.: Higher Tran- scendental Functions, Vol.3. McGBraw-Hill, New York-Toronto-London (1955).
- Ferro, F. Lavago, A., Quarati, P.: Temperature dependence of modified CNO nuclear reaction rates in dense stellar plasmas (2003), arXiv:nucl- th/0312106v1.
- Gupta, V. G., Sharma, B.: Application of Sumudu Transform in Reaction- Diffusion Systems and Nonlinear Waves, Applied Mathematical Sciences, 4, 435 -446 (2010).
- Haubold, H.J, Mathai, A.M.: The fractional kinetic equation and ther- monuclear functions. Astrophysics and Space-Sciences, 327, 53-63 (2000).
- Halfer, R.(ed.): Applications of Fractional Calculus in Physics, Word Sci- entific, Singapore (2000)
- Hartley, T.T. and Lorenzo, C. F. A Solution to the Fundamental Lin- ear Fractional Order Differential Equation," Report No. NASA/TP-1998- 208693, (1998).
- Humbert, P.: Quelques resulats relati-fs a'la fonction de Mittage-Leffler.
- C.R. Acad. Sci., Parish 236, 1467-1468 (1953)
- Humbert, P., Agarwal, R.P.: Sur la function de Mittag-Leffler et quelques- unes de ses generalizations. Bull. Sci. Math. (Ser. II) 77, 180-185 (1953).
- Kourganoff, V.: Introduction to the Physics of Stellar Interiors, D. Reidel Publishing Company, Dordrecht (1973).
- Lang, K.R.: Astrophysical Formulae Vol.1 (Radiation, Gas Processes and High Energy Astrophysics) and Vol.II (Space, Time, Matter and Cosmol- ogy), CitySpringer-Verlag, Berlin-Heidelberg (1999).
- Lorenzo, C.F., Hartley, T.T.: Generalized function for the fractional cal- culus. NASA/TP-1999-209424 (1999).
- Miller, K.S Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York (1993).
- Mittag-Leffler, G.M.: Sur la nouvelle fonction Eα(x). C.R. Acad. Sci., Paris (Ser.II) 137, 554-558 (1903).
- Mittag-Leffler, G.M.: Sur la representation analytique d'une branche uni- forme d'une fonction monogene. Acta Math. 29, 101-181 (1905).
- Oldhman, K.B., Spanier, J.: The Fractional Calculus. Theory and Appli- cations of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974).
- Perdang, J.: Lecture Notes in Steller Stability, Part I and II. Instito di Astronomia, Padov, (1976).
- Prabhakar, T.R.: A singular integral equation with generalized Mittag- Leffler function in the kernel. Yokohama Mathematical Journal 19, 7-15 (1971).
- Qutaibeh D. K., Belgacem, F B. M. :Applications of the Sumudu Trans- form to Fractional Differential Equations (In Press).
- Samko, S.G. Kilbas, A.A. Marichev, O.I.: Fractional Integrals and Deriva- tives. Theory and Applications, New York (1993).
- Saxena, R.K., Mathai., A.M., Haubold, H.J.: On fractional kinetic equa- tions. Astrohysics Space Sci., 282, 281-287 (2002).
- Saxena, R.K., Mathai., A.M., Haubold, H.J.: On generalized fractional kinetic equations. Physica A, 344, 653-664 (2004).
- Srivastava, H. M., Dousat, On Eulerian Integrals Associated with Kempe' D' Feriet's Functions, An. Sti. Univ. "Al. I. Cuza." Iasi Sect. Ia. Mat. (N. S.) 18, 93-99 (1972).
- Srivastava, H.M. Saxena, R.K.: Operators of fractional integration and their applications. Applied Mathematics and Computation 118, 1-52 (2001).
- Tsallis, C.: Entropic nonextensivity: A possible measures of Complexity. Chaos, Solitons and Fractals 13, 371-391 (2002).
- Watugala, G.K.; Sumudu Transform a new integral transform to solve dif- ferential equations and control engineering problems. Mathematical En- gineering in Industry, (MEI), Vol. 6, No. 4,319-329, (1998).
- Wiman, A.: Ueber den Fundamentalsatz in der Theorie der Funkilionen Eα(x). Acta. Math. 29, 191-201 (1905a).
- Wiman, A.: Ueber die Nullstellen der Funktionen Eα(x). Acta Math. 29, 217-234 (1905b).