Quantitative analysis of trade networks: data and robustness
Applied Network Science
https://doi.org/10.1007/S41109-021-00386-3Abstract
A common issue in trade network analysis is missing data, as some countries do not report trade flows. This paper explores what constitutes suitable data, how to deal with missing data, and demonstrates the results using key network measures. All-to-all potential connectivity of trade between countries is considered as a starting point, in contrast to the common approach of analyzing trade networks using only the countries that actually report trade flows. In order to fill the gap between the two approaches, a more complete dataset than just the dataset of trade between reporting countries is reconstructed and the robustness of studying this bigger dataset is examined. The difference between imputed and actual network adjacency matrices is evaluated based on several centrality measures. The results are illustrated using ten commodity groups from the United Nations Database, which demonstrate that under the proposed reconstruction procedure the ranks of the countries do not change si...
References (65)
- Wasserman S, Faust K (1994) Social network analysis: methods and applications, vol 8. Cambridge University Press, Cambridge
- Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167-256. https:// doi. org/ 10. 1137/ S0036 14450 342480
- Jackson MO (2010) Social and economic networks. Princeton University Press, Princeton
- Serrano MA, Boguná M (2003) Topology of the world trade web. Phys Rev E 68(1):015101. https:// doi. org/ 10. 1103/ PhysR evE. 68. 015101
- Li X, Jin YY, Chen G (2003) Complexity and synchronization of the world trade web. Physica A 328(1-2):287-296. https:// doi. org/ 10. 1016/ S0378-4371(03) 00567-3
- Garlaschelli D, Loffredo MI (2004) Fitness-dependent topological properties of the world trade web. Phys Rev Lett 93(18):188701. https:// doi. org/ 10. 1103/ PhysR evLett. 93. 188701
- Baskaran T, Brück T (2005) Scale-free networks in international trade. Technical report, DIW Discussion Papers. http:// www. diw. de/ docum ents/ publi katio nen/ 73/ diw_ 01.c. 43299. de/ dp493. pdf
- Fagiolo G, Reyes J, Schiavo S (2008) On the topological properties of the world trade web: a weighted network analysis. Physica A 387(15):3868-3873. https:// doi. org/ 10. 1016/j. physa. 2008. 01. 050
- Fagiolo G (2010) The international-trade network: gravity equations and topological properties. J Econ Interact Coord 5(1):1-25. https:// doi. org/ 10. 1007/ s11403-010-0061-y
- Squartini T, Fagiolo G, Garlaschelli D (2011) Randomizing world trade. I. A binary network analysis. Phys Rev E 84(4):046117. https:// doi. org/ 10. 1103/ PhysR evE. 84. 046117
- Squartini T, Fagiolo G, Garlaschelli D (2011) Randomizing world trade. II. A weighted network analysis. Phys Rev E 84(4):046118. https:// doi. org/ 10. 1103/ PhysR evE. 84. 046118
- De Benedictis L, Nenci S, Santoni G, Tajoli L, Vicarelli C (2014) Network analysis of world trade using the BACI-CEPII dataset. Glob Econ J 14(3-4):287-343. https:// doi. org/ 10. 1515/ gej-2014-0032
- Deguchi T, Takahashi K, Takayasu H, Takayasu M (2014) Hubs and authorities in the world trade network using a weighted hits algorithm. PLoS ONE. https:// doi. org/ 10. 1371/ journ al. pone. 01003 38. g001
- Abbate A, De Benedictis L, Fagiolo G, Tajoli L (2018) Distance-varying assortativity and clustering of the international trade network-ADDENDUM. Netw Sci 6(4):633-633. https:// doi. org/ 10. 1017/ nws. 2018. 16
- de Andrade RL, Rêgo LC (2018) The use of nodes attributes in social network analysis with an application to an international trade network. Physica A 491:249-270. https:// doi. org/ 10. 1016/j. physa. 2017. 08. 126
- Ding H, Jin Y, Liu Z, Xie W (2019) The relationship between international trade and capital flow: a network perspec- tive. J Int Money Finance 91:1-11. https:// doi. org/ 10. 1016/j. jimon fin. 2018. 10. 001
- Yan B, Luo J (2019) Multicores-periphery structure in networks. Netw Sci 7(1):70-87. https:// doi. org/ 10. 1017/ nws. 2018. 27
- Garlaschelli D, Loffredo MI (2005) Structure and evolution of the world trade network. Physica A 355(1):138-144. https:// doi. org/ 10. 1016/j. physa. 2005. 02. 075
- Bhattacharya K, Mukherjee G, Saramäki J, Kaski K, Manna SS (2008) The international trade network: weighted network analysis and modelling. J Stat Mech Theory Exp 2008(02):02002. https:// doi. org/ 10. 1088/ 1742-5468/ 2008/ 02/ P02002
- Reyes J, Schiavo S, Fagiolo G (2008) Assessing the evolution of international economic integration using random walk betweenness centrality: the cases of east asia and latin america. Adv Complex Syst 11(05):685-702. https:// doi. org/ 10. 1142/ S0219 52590 80019 45
- Tzekina I, Danthi K, Rockmore DN (2008) Evolution of community structure in the world trade web. Eur Phys J B 63(4):541-545. https:// doi. org/ 10. 1140/ epjb/ e2008-00181-2
- Zhang J, Cui Z, Zu L (2014) The evolution of free trade networks. J Econ Dyn Control 38:72-86. https:// doi. org/ 10. 1016/j. jedc. 2013. 09. 004
- Zhu Z, Cerina F, Chessa A, Caldarelli G, Riccaboni M (2014) The rise of china in the international trade network: a community core detection approach. PLoS ONE 9(8):105496. https:// doi. org/ 10. 1371/ journ al. pone. 01054 96
- Matous P, Todo Y (2016) Energy and resilience: the effects of endogenous interdependencies on trade network formation across space among major japanese firms. Netw Sci 4(2):141-163. https:// doi. org/ 10. 1017/ nws. 2015. 37
- Zhou M, Wu G, Xu H (2016) Structure and formation of top networks in international trade, 2001-2010. Soc Netw 44:9-21. https:// doi. org/ 10. 1016/j. socnet. 2015. 07. 006
- del Río-Chanona RM, Grujić J, Jensen HJ (2017) Trends of the world input and output network of global trade. PLoS ONE 12(1):0170817. https:// doi. org/ 10. 1371/ journ al. pone. 01708 17
- Fracasso A, Nguyen HT, Schiavo S (2018) The evolution of oil trade: a complex network approach. Netw Sci 6(4):545-570. https:// doi. org/ 10. 1017/ nws. 2018.6
- Gleditsch KS (2002) Expanded trade and GDP data. J Conflict Resolut 46(5):712-724. https:// doi. org/ 10. 1177/ 00220 02702 04600 5006
- The World Bank group (2021) Total population. https:// data. world bank. org/ indic ator/ SP. POP. TOTL
- Huang S, Gou W, Cai H, Li X, Chen Q (2020) Effects of regional trade agreement to local and global trade purity relationships. Complexity. https:// doi. org/ 10. 1155/ 2020/ 29872 17
- Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford
- Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47. https:// doi. org/ 10. 1103/ RevMo dPhys. 74. 47
- Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4-5):175-308. https:// doi. org/ 10. 1016/j. physr ep. 2005. 10. 009
- Restrepo JG, Ott E, Hunt BR (2007) Approximating the largest eigenvalue of network adjacency matrices. Phys Rev E 76(5):056119. https:// doi. org/ 10. 1103/ PhysR evE. 76. 056119
- Watts DJ, Strogatz SH (1998) Collective dynamics of "small-world'' networks. Nature 393(6684):440. https:// doi. org/ 10. 1038/ 30918
- Atay FM, Biyikoglu T, Jost J (2006) Synchronization of networks with prescribed degree distributions. IEEE Trans Circuits Syst I Regul Pap 53(1):92-98. https:// doi. org/ 10. 1109/ TCSI. 2005. 854604
- Newman ME, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263(4-6):341-346. https:// doi. org/ 10. 1016/ S0375-9601(99) 00757-4
- Barabási A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60-69. https:// doi. org/ 10. 1038/ scien tific ameri can05 03-60
- Jackson MO, Rogers BW, Zenou Y (2017) The economic consequences of social-network structure. J Econ Lit 55(1):49-95. https:// doi. org/ 10. 1257/ jel. 20150 694
- Franceschet M (2014) Katz centrality. https:// www. sci. unich. it/ ~franc esc/ teach ing/ netwo rk/ katz. html
- Dijkstra EW et al (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269-271. https:// doi. org/ 10. 1007/ BF013 86390
- Newman ME (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016132. https:// doi. org/ 10. 1103/ PHYSR EVE. 64. 016132
- United Nations (2019) United Nations Comtrade database. https:// comtr ade. un. org/ data/
- United Nations (2016) Every user of United Nations Comtrade should know the coverage and limitations of the data. https:// comtr ade. un. org/ db/ help/ uread MeFir st. aspx
- United Nations (2011) International merchandise trade statistics (IMTS), concepts and definitions (2010). https:// unsta ts. un. org/ unsd/ trade/ eg-imts/ IMTS% 202010% 20(Engli sh). pdf
- Kendall MG (1970) Rank correlation methods. Griffin, London
- Chalmer BJ (2020) Understanding statistics. CRC Press, Boca Raton
- Salkind NJ (2007) Fisher's Z transformation. Encyclopedia of measurement and statistics, vol 1. SAGE Publications, Inc., Thousand Oaks, pp 361-364. https:// doi. org/ 10. 4135/ 97814 12952 644. n175
- Jolliffe IT (2002) Principal component analysis. Springer, Gateway East
- Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433-459. https:// doi. org/ 10. 1002/ wics. 101
- Sunderland KM, Beaton D, Fraser J, Kwan D, McLaughlin PM, Montero-Odasso M, Peltsch AJ, Pieruccini-Faria F, Sahlas DJ, Swartz RH et al (2019) The utility of multivariate outlier detection techniques for data quality evaluation in large studies: an application within the ondri project. BMC Med Res Methodol 19(1):1-16. https:// doi. org/ 10. 1186/ s12874-019-0737-5
- Vyas S, Kumaranayake L (2006) Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan 21(6):459-468. https:// doi. org/ 10. 1093/ heapol/ czl029
- Chen B, Woo YP (2010) Measuring economic integration in the Asia-Pacific region: a principal components approach. Asian Econ Pap 9(2):121-143. https:// doi. org/ 10. 1162/ ASEP_a_ 00009
- Skillicorn D (2019) Understanding complex datasets: data mining with matrix decompositions. CRC Press, Boca Raton 55. Sethneha (2020) Entropy-a key concept for all data science beginners. https:// www. analy ticsv idhya. com/ blog/ 2020/ 11/ entro py-a-key-conce pt-for-all-data-scien ce-begin ners
- Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379-423. https:// doi. org/ 10. 1002/j. 1538-7305. 1948. tb013 38.x
- Zekri H, Mokhtari AR, Cohen DR (2016) Application of singular value decomposition (SVD) and semi-discrete decomposition (SDD) techniques in clustering of geochemical data: an environmental study in central Iran. Stoch Environ Res Risk Assess 30(7):1947-1960. https:// doi. org/ 10. 1007/ s00477-016-1219-5
- Kali R, Reyes J (2007) The architecture of globalization: a network approach to international economic integration. J Int Bus Stud 38(4):595-620. https:// doi. org/ 10. 1057/ palgr ave. jibs. 84002 86
- Baskaran T, Blöchl F, Brück T, Theis FJ (2011) The Heckscher-Ohlin model and the network structure of international trade. Int Rev Econ Finance 20(2):135-145. https:// doi. org/ 10. 1016/j. iref. 2010. 11. 003
- Fagiolo G, Reyes J, Schiavo S (2009) World-trade web: Topological properties, dynamics, and evolution. Phys Rev E 79(3):036115. https:// doi. org/ 10. 1103/ PhysR evE. 79. 036115
- Kaluza P, Kölzsch A, Gastner MT, Blasius B (2010) The complex network of global cargo ship movements. J R Soc Interface 7(48):1093-1103. https:// doi. org/ 10. 1098/ rsif. 2009. 0495
- Fornito A, Zalesky A, Bullmore E (2016) Fundamentals of brain network analysis. Elsevier, Amsterdam
- Dodge Y (2008) The concise encyclopedia of statistics. Springer, Berlin
- Barabási A-L (2016) Network science. Cambridge University Press, Cambridge
- Onnela J-P, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J, Barabási A-L (2007) Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci USA 104(18):7332-7336. https:// doi. org/ 10. 1073/ pnas. 06102 45104
- Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroIm- age 52(3):1059-1069. https:// doi. org/ 10. 1016/j. neuro image. 2009. 10. 003