Academia.eduAcademia.edu

Outline

Quantitative analysis of trade networks: data and robustness

Applied Network Science

https://doi.org/10.1007/S41109-021-00386-3

Abstract

A common issue in trade network analysis is missing data, as some countries do not report trade flows. This paper explores what constitutes suitable data, how to deal with missing data, and demonstrates the results using key network measures. All-to-all potential connectivity of trade between countries is considered as a starting point, in contrast to the common approach of analyzing trade networks using only the countries that actually report trade flows. In order to fill the gap between the two approaches, a more complete dataset than just the dataset of trade between reporting countries is reconstructed and the robustness of studying this bigger dataset is examined. The difference between imputed and actual network adjacency matrices is evaluated based on several centrality measures. The results are illustrated using ten commodity groups from the United Nations Database, which demonstrate that under the proposed reconstruction procedure the ranks of the countries do not change si...

References (65)

  1. Wasserman S, Faust K (1994) Social network analysis: methods and applications, vol 8. Cambridge University Press, Cambridge
  2. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167-256. https:// doi. org/ 10. 1137/ S0036 14450 342480
  3. Jackson MO (2010) Social and economic networks. Princeton University Press, Princeton
  4. Serrano MA, Boguná M (2003) Topology of the world trade web. Phys Rev E 68(1):015101. https:// doi. org/ 10. 1103/ PhysR evE. 68. 015101
  5. Li X, Jin YY, Chen G (2003) Complexity and synchronization of the world trade web. Physica A 328(1-2):287-296. https:// doi. org/ 10. 1016/ S0378-4371(03) 00567-3
  6. Garlaschelli D, Loffredo MI (2004) Fitness-dependent topological properties of the world trade web. Phys Rev Lett 93(18):188701. https:// doi. org/ 10. 1103/ PhysR evLett. 93. 188701
  7. Baskaran T, Brück T (2005) Scale-free networks in international trade. Technical report, DIW Discussion Papers. http:// www. diw. de/ docum ents/ publi katio nen/ 73/ diw_ 01.c. 43299. de/ dp493. pdf
  8. Fagiolo G, Reyes J, Schiavo S (2008) On the topological properties of the world trade web: a weighted network analysis. Physica A 387(15):3868-3873. https:// doi. org/ 10. 1016/j. physa. 2008. 01. 050
  9. Fagiolo G (2010) The international-trade network: gravity equations and topological properties. J Econ Interact Coord 5(1):1-25. https:// doi. org/ 10. 1007/ s11403-010-0061-y
  10. Squartini T, Fagiolo G, Garlaschelli D (2011) Randomizing world trade. I. A binary network analysis. Phys Rev E 84(4):046117. https:// doi. org/ 10. 1103/ PhysR evE. 84. 046117
  11. Squartini T, Fagiolo G, Garlaschelli D (2011) Randomizing world trade. II. A weighted network analysis. Phys Rev E 84(4):046118. https:// doi. org/ 10. 1103/ PhysR evE. 84. 046118
  12. De Benedictis L, Nenci S, Santoni G, Tajoli L, Vicarelli C (2014) Network analysis of world trade using the BACI-CEPII dataset. Glob Econ J 14(3-4):287-343. https:// doi. org/ 10. 1515/ gej-2014-0032
  13. Deguchi T, Takahashi K, Takayasu H, Takayasu M (2014) Hubs and authorities in the world trade network using a weighted hits algorithm. PLoS ONE. https:// doi. org/ 10. 1371/ journ al. pone. 01003 38. g001
  14. Abbate A, De Benedictis L, Fagiolo G, Tajoli L (2018) Distance-varying assortativity and clustering of the international trade network-ADDENDUM. Netw Sci 6(4):633-633. https:// doi. org/ 10. 1017/ nws. 2018. 16
  15. de Andrade RL, Rêgo LC (2018) The use of nodes attributes in social network analysis with an application to an international trade network. Physica A 491:249-270. https:// doi. org/ 10. 1016/j. physa. 2017. 08. 126
  16. Ding H, Jin Y, Liu Z, Xie W (2019) The relationship between international trade and capital flow: a network perspec- tive. J Int Money Finance 91:1-11. https:// doi. org/ 10. 1016/j. jimon fin. 2018. 10. 001
  17. Yan B, Luo J (2019) Multicores-periphery structure in networks. Netw Sci 7(1):70-87. https:// doi. org/ 10. 1017/ nws. 2018. 27
  18. Garlaschelli D, Loffredo MI (2005) Structure and evolution of the world trade network. Physica A 355(1):138-144. https:// doi. org/ 10. 1016/j. physa. 2005. 02. 075
  19. Bhattacharya K, Mukherjee G, Saramäki J, Kaski K, Manna SS (2008) The international trade network: weighted network analysis and modelling. J Stat Mech Theory Exp 2008(02):02002. https:// doi. org/ 10. 1088/ 1742-5468/ 2008/ 02/ P02002
  20. Reyes J, Schiavo S, Fagiolo G (2008) Assessing the evolution of international economic integration using random walk betweenness centrality: the cases of east asia and latin america. Adv Complex Syst 11(05):685-702. https:// doi. org/ 10. 1142/ S0219 52590 80019 45
  21. Tzekina I, Danthi K, Rockmore DN (2008) Evolution of community structure in the world trade web. Eur Phys J B 63(4):541-545. https:// doi. org/ 10. 1140/ epjb/ e2008-00181-2
  22. Zhang J, Cui Z, Zu L (2014) The evolution of free trade networks. J Econ Dyn Control 38:72-86. https:// doi. org/ 10. 1016/j. jedc. 2013. 09. 004
  23. Zhu Z, Cerina F, Chessa A, Caldarelli G, Riccaboni M (2014) The rise of china in the international trade network: a community core detection approach. PLoS ONE 9(8):105496. https:// doi. org/ 10. 1371/ journ al. pone. 01054 96
  24. Matous P, Todo Y (2016) Energy and resilience: the effects of endogenous interdependencies on trade network formation across space among major japanese firms. Netw Sci 4(2):141-163. https:// doi. org/ 10. 1017/ nws. 2015. 37
  25. Zhou M, Wu G, Xu H (2016) Structure and formation of top networks in international trade, 2001-2010. Soc Netw 44:9-21. https:// doi. org/ 10. 1016/j. socnet. 2015. 07. 006
  26. del Río-Chanona RM, Grujić J, Jensen HJ (2017) Trends of the world input and output network of global trade. PLoS ONE 12(1):0170817. https:// doi. org/ 10. 1371/ journ al. pone. 01708 17
  27. Fracasso A, Nguyen HT, Schiavo S (2018) The evolution of oil trade: a complex network approach. Netw Sci 6(4):545-570. https:// doi. org/ 10. 1017/ nws. 2018.6
  28. Gleditsch KS (2002) Expanded trade and GDP data. J Conflict Resolut 46(5):712-724. https:// doi. org/ 10. 1177/ 00220 02702 04600 5006
  29. The World Bank group (2021) Total population. https:// data. world bank. org/ indic ator/ SP. POP. TOTL
  30. Huang S, Gou W, Cai H, Li X, Chen Q (2020) Effects of regional trade agreement to local and global trade purity relationships. Complexity. https:// doi. org/ 10. 1155/ 2020/ 29872 17
  31. Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford
  32. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47. https:// doi. org/ 10. 1103/ RevMo dPhys. 74. 47
  33. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4-5):175-308. https:// doi. org/ 10. 1016/j. physr ep. 2005. 10. 009
  34. Restrepo JG, Ott E, Hunt BR (2007) Approximating the largest eigenvalue of network adjacency matrices. Phys Rev E 76(5):056119. https:// doi. org/ 10. 1103/ PhysR evE. 76. 056119
  35. Watts DJ, Strogatz SH (1998) Collective dynamics of "small-world'' networks. Nature 393(6684):440. https:// doi. org/ 10. 1038/ 30918
  36. Atay FM, Biyikoglu T, Jost J (2006) Synchronization of networks with prescribed degree distributions. IEEE Trans Circuits Syst I Regul Pap 53(1):92-98. https:// doi. org/ 10. 1109/ TCSI. 2005. 854604
  37. Newman ME, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263(4-6):341-346. https:// doi. org/ 10. 1016/ S0375-9601(99) 00757-4
  38. Barabási A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60-69. https:// doi. org/ 10. 1038/ scien tific ameri can05 03-60
  39. Jackson MO, Rogers BW, Zenou Y (2017) The economic consequences of social-network structure. J Econ Lit 55(1):49-95. https:// doi. org/ 10. 1257/ jel. 20150 694
  40. Franceschet M (2014) Katz centrality. https:// www. sci. unich. it/ ~franc esc/ teach ing/ netwo rk/ katz. html
  41. Dijkstra EW et al (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269-271. https:// doi. org/ 10. 1007/ BF013 86390
  42. Newman ME (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016132. https:// doi. org/ 10. 1103/ PHYSR EVE. 64. 016132
  43. United Nations (2019) United Nations Comtrade database. https:// comtr ade. un. org/ data/
  44. United Nations (2016) Every user of United Nations Comtrade should know the coverage and limitations of the data. https:// comtr ade. un. org/ db/ help/ uread MeFir st. aspx
  45. United Nations (2011) International merchandise trade statistics (IMTS), concepts and definitions (2010). https:// unsta ts. un. org/ unsd/ trade/ eg-imts/ IMTS% 202010% 20(Engli sh). pdf
  46. Kendall MG (1970) Rank correlation methods. Griffin, London
  47. Chalmer BJ (2020) Understanding statistics. CRC Press, Boca Raton
  48. Salkind NJ (2007) Fisher's Z transformation. Encyclopedia of measurement and statistics, vol 1. SAGE Publications, Inc., Thousand Oaks, pp 361-364. https:// doi. org/ 10. 4135/ 97814 12952 644. n175
  49. Jolliffe IT (2002) Principal component analysis. Springer, Gateway East
  50. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433-459. https:// doi. org/ 10. 1002/ wics. 101
  51. Sunderland KM, Beaton D, Fraser J, Kwan D, McLaughlin PM, Montero-Odasso M, Peltsch AJ, Pieruccini-Faria F, Sahlas DJ, Swartz RH et al (2019) The utility of multivariate outlier detection techniques for data quality evaluation in large studies: an application within the ondri project. BMC Med Res Methodol 19(1):1-16. https:// doi. org/ 10. 1186/ s12874-019-0737-5
  52. Vyas S, Kumaranayake L (2006) Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan 21(6):459-468. https:// doi. org/ 10. 1093/ heapol/ czl029
  53. Chen B, Woo YP (2010) Measuring economic integration in the Asia-Pacific region: a principal components approach. Asian Econ Pap 9(2):121-143. https:// doi. org/ 10. 1162/ ASEP_a_ 00009
  54. Skillicorn D (2019) Understanding complex datasets: data mining with matrix decompositions. CRC Press, Boca Raton 55. Sethneha (2020) Entropy-a key concept for all data science beginners. https:// www. analy ticsv idhya. com/ blog/ 2020/ 11/ entro py-a-key-conce pt-for-all-data-scien ce-begin ners
  55. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379-423. https:// doi. org/ 10. 1002/j. 1538-7305. 1948. tb013 38.x
  56. Zekri H, Mokhtari AR, Cohen DR (2016) Application of singular value decomposition (SVD) and semi-discrete decomposition (SDD) techniques in clustering of geochemical data: an environmental study in central Iran. Stoch Environ Res Risk Assess 30(7):1947-1960. https:// doi. org/ 10. 1007/ s00477-016-1219-5
  57. Kali R, Reyes J (2007) The architecture of globalization: a network approach to international economic integration. J Int Bus Stud 38(4):595-620. https:// doi. org/ 10. 1057/ palgr ave. jibs. 84002 86
  58. Baskaran T, Blöchl F, Brück T, Theis FJ (2011) The Heckscher-Ohlin model and the network structure of international trade. Int Rev Econ Finance 20(2):135-145. https:// doi. org/ 10. 1016/j. iref. 2010. 11. 003
  59. Fagiolo G, Reyes J, Schiavo S (2009) World-trade web: Topological properties, dynamics, and evolution. Phys Rev E 79(3):036115. https:// doi. org/ 10. 1103/ PhysR evE. 79. 036115
  60. Kaluza P, Kölzsch A, Gastner MT, Blasius B (2010) The complex network of global cargo ship movements. J R Soc Interface 7(48):1093-1103. https:// doi. org/ 10. 1098/ rsif. 2009. 0495
  61. Fornito A, Zalesky A, Bullmore E (2016) Fundamentals of brain network analysis. Elsevier, Amsterdam
  62. Dodge Y (2008) The concise encyclopedia of statistics. Springer, Berlin
  63. Barabási A-L (2016) Network science. Cambridge University Press, Cambridge
  64. Onnela J-P, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J, Barabási A-L (2007) Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci USA 104(18):7332-7336. https:// doi. org/ 10. 1073/ pnas. 06102 45104
  65. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroIm- age 52(3):1059-1069. https:// doi. org/ 10. 1016/j. neuro image. 2009. 10. 003