String theory predictions for future accelerators
2000, Nuclear Physics B
Abstract
We consider, in a string theory framework, physical processes of phenomenological interest in models with a low string scale. The amplitudes we study involve treelevel virtual gravitational exchange, divergent in a field-theoretical treatment, and massive gravitons emission, which are the main signatures of this class of models. First, we discuss the regularization of summations appearing in virtual gravitational (closed string) Kaluza-Klein exchanges in Type I strings. We argue that a convenient manifestly ultraviolet convergent low energy limit of type I string theory is given by an effective field theory with an arbitrary cutoff Λ in the closed (gravitational) channel and a related cutoff M 2 s /Λ in the open (Yang-Mills) channel. We find the leading string corrections to the field theory results. Second, we calculate exactly string tree-level three and four-point amplitudes with gauge bosons and one massive graviton and examine string deviations from the field-theory result.
References (25)
- M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Vol. I,II, Cambridge University Press, 1987.
- J. Polchinski, String Theory, Vol. I,II, Cambridge University Press, 1998.
- I. Antoniadis, Phys. Lett. B246 (1990) 377;
- I. Antoniadis and K. Benakli, Phys. Lett. B326 (1994) 69; I. Antoniadis, K. Benakli and M. Quiros, Phys. Lett. B331 (1994) 313.
- E. Witten, Nucl. Phys. B471 (1996) 135, J.D. Lykken, Phys. Rev. D54 (1996) 3693.
- N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998) 263, hep- ph/9807344.
- K.R. Dienes, E. Dudas and T. Gherghetta, Phys. Lett. B436 (1998) 55, Nucl. Phys. B537 (1999) 47, hep-ph/9807522; C. Bachas, hep-th/9807415; D. Ghilencea and G.G. Ross, Phys. Lett. B442 (1998) 165; Z. Kakushadze, hep-th/9811193; A. Delgado and M. Quirós, hep-ph/9903400; Z. Kakushadze and T.R. Taylor, hep-th/9905137; I. An- toniadis, C. Bachas and E. Dudas, hep-th/9906039.
- I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436 (1998) 263, G. Shiu and S.-H.H. Tye, Phys. Rev. D58 (1998) 106007; K. Benakli, Phys. Rev. D60 (1999) 104002; C. Burgess, L.E. Ibáñez and F. Quevedo, hep-ph/9810535; I. Antoniadis and C. Bachas, hep-th/9812093; I. Antoniadis and B. Pioline, Nucl. Phys. B550 (1999) 41.
- G.F. Giudice, R. Rattazzi and J.D. Wells, Nucl. Phys. B544 (1999) 3; E.A. Mirabelli, M. Perelstein and M.E. Peskin, Phys. Rev. Lett. 82 (1999) 2236; T. Han, J.D. Lykken and R.J. Zhang, Phys. Rev. D59 (1999) 105006; J.L. Hewett, Phys. Rev. Lett. 82 (1999) 4765; T.G. Rizzo, Phys. Rev. D59 (1999) 115010, Phys. Rev. D60 (1999) 075001;
- P. Mathews, S. Raychaudhuri and K. Sridhar, Phys. Lett. B450 (1999) 343 and hep-ph/9904232;
- M. Besancon, hep-ph/9909364.
- A. Sagnotti, hep-th/9302099;
- C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Ya.S. Stanev, Phys. Lett. B387 (1996) 743; G. Zwart, Nucl. Phys. B526 (1998) 378;
- Z. Kakushadze, G. Shiu and S.H.H. Tye, Nucl. Phys. B533 (1998) 25; G. Aldazabal, A. Font, L.E. Ibañez and G. Violero, Nucl. Phys. B536 (1998) 29.
- E. Cremmer and J. Scherk, Nucl. Phys. B50 (1972) 222;
- L. Clavelli and J.A. Shapiro, Nucl. Phys. B57 (1973) 490; C.G. Callan, C. Lovelace, C.R. Nappi and S.A. Yost, Nucl. Phys. B293 (1987) 83, Nucl. Phys. B308 (1988) 221; J. Polchinski and Y. Cai, Nucl. Phys. B296 (1988) 91.
- A. Hashimoto and I.R. Klebanov, Phys. Lett. B381 (1996) 437, Nucl. Phys. Proc. Suppl. B55 1997 118.
- M.R. Garousi and R.C. Myers, Nucl. Phys. B475 (1996) 193.
- M.B. Green, J.H. Schwarz and L. Brink, Nucl. Phys. B198 (1982) 474.
- M.B. Green and J.H. Schwarz, Nucl. Phys. B198 (1982) 441.
- E. D'Hoker and D.H. Phong, Nucl. Phys. B440 (1995) 24.
- A.A Tseytlin, Phys. Lett. B367 (1996) 84, Nucl. Phys. B467 (1996) 383;
- C. Bachas and E. Kiritsis, Nucl. Phys. Proc. Suppl. B55 (1997) 194.
- M. Bando, T. Kugo, T. Nagoshi and K. Yoshioka, hep-ph/9906549; J. Hisano and N. Okada, hep-ph/9909555.
- D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B271 (1986) 93.