Academia.eduAcademia.edu

Outline

Faster Directions for Second Order SMO

2010, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-642-15822-3_4

Abstract

Second order SMO represents the state-of-the-art in SVM training for moderate size problems. In it, the solution is attained by solving a series of subproblems which are optimized w.r.t just a pair of multipliers. In this paper we will illustrate how SMO works in a two stage fashion, setting first the values of the bounded multipliers to the penalty factor C and proceeding then to adjust the non-bounded multipliers. Furthermore, during this second stage the selected pairs for update often appear repeatedly during the algorithm. Taking advantage of this, we shall propose a procedure to combine previously used descent directions that results in much fewer iterations in this second stage and that may also lead to noticeable savings in kernel operations.