Free quotients of 𝑆𝐿₂(𝑅[𝑥])
1997, Proceedings of the American Mathematical Society
https://doi.org/10.1090/S0002-9939-97-03809-4Abstract
It is shown that if R R is an integral domain which is not a field, and U 2 ( R [ x ] ) U_2(R[x]) is the subgroup of S L 2 ( R [ x ] ) SL_2(R[x]) generated by all unipotent elements, then the quotient group S L 2 ( R [ x ] ) / U 2 ( R [ x ] ) SL_2(R[x])/U_2(R[x]) has a free quotient of infinite rank.
References (5)
- W. Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge University Press, 1989. MR 91b:20001
- F. Grunewald, J. Mennicke and L. Vaserstein, On the groups SL 2 (Z[x]) and SL 2 (k[x, y]), Israel Jour. of Math. 88 (1994), 157-193. MR 95h:20061
- A. W. Mason, Normal subgroups of SL 2 (k[t]) with or without free quotients, Jour. of Algebra 150 (1992), 281-295. MR 93h:20056
- H. Nagao, On GL(2, K[x]), Jour. Poly. Osaka Univ. 10 (1959), 117-121. MR 22:5684
- J. P. Serre, Trees, Springer-Verlag, New York, 1980. MR 82c:20083 Department of Mathematics, Tufts University, Medford, Massachusetts 02155 E-mail address: skrstic@diamond.tufts.edu