Numerical simulation of spark ignition including ionization
2000, Proceedings of the Combustion Institute
Abstract
A detailed understanding of the processes associated with spark ignition, as a first step during combustion, is of great importance for clean operation of spark ignition engines. In the past 10 years, a growing concern for environmental protection, including low emission of pollutants, has increased the interest in the numerical simulation of ignition phenomena to guarantee successful flame kernel development even for lean mixtures. However, the process of spark ignition in a combustible mixture is not yet fully understood. The use of detailed reaction mechanisms, combined with electrodynamical modeling of the spark, is necessary to optimize spark ignition for lean mixtures. This work presents the simulation of the coupling of flow, chemical reactions, and transport with discharge processes including ionization in order to investigate the development of a stable flame kernel initiated by an electrical spark in methane/air mixtures. A transport model taking into account the interactions of charged particles has been incorporated in the flow model. This model is based on the Chapman-Enskog theory with an extension for polyatomic gases and considers resonant charge transfer and ambipolar diffusion for the computation of the transport coefficients. A two-dimensional code to simulate the early stages of flame development, shortly after the breakdown discharge, has been developed. The modeling includes an equation for the electrical field. The spark plasma channel left behind by the breakdown is incorporated into the initial conditions. Due to the fast expansion of the plasma channel, a complicated flowfield develops after the emission of a shock wave by the expanding channel. The second phase, that is, the development of a propagating flame and the flame kernel expansion, can last up to several milliseconds and is dominated by diffusive processes and chemical reactions.
References (30)
- Maly, R., and Vogel, M., Proc. Combust. Inst. 17:821- 831 (1978).
- Maly, R., Fuel Economy in Road Vehicles Powered by Spark Ignition Engines, (J. C. Hilliard and G. S. Springer, eds.), Plenum Press, New York, 1984.
- Bradley, D., and Lung, F. K.-K., Combust. Flame 47:71-93 (1987).
- Sher, E., and Rafael, S., Proc. Combust. Inst. 19:251- 257 (1982).
- Lim, M. T., Anderson, R. W., and Arpaci, V. S., Com- bust. Flame 69:303-313 (1987).
- Maly, R., Proc. Combust. Inst. 18:1747-1754 (1981).
- Pischinger, S., and Heywood, J. B., A Study of Flame Development and Engine Performance with Break- down Ignition Systems in a Visualization Engine, SAE Paper 88-0518.
- Xu, J., "Untersuchung der Funkenzu ¨ndung mittels 20- Laserinduzierter Fluoreszenz von Otf-Radikalen," Dissertation, Institut fu ¨r Technische Verbrennung, Universita ¨t Stuttgart, Germany, 1995.
- Ishii, K., Tsukamoto, T., Ujiie, Y., and Kono, M., Com- bust. Flame 91:153-164 (1992).
- Kono, M., Ishii, K., Niu, K., Tsukamoto, T., and Ujiie, Y., Prog. Astronaut. Aeronaut. 131:55-70 (1991).
- Pitt, P. L., Clements, R. M., and Topham, D. R., Com- bust. Sci. Technol. 78:289-314 (1991).
- Kono, M., Niu, K., Tsukamoto, T., and Ujiie, Y., Proc. Combust. Inst. 22:1643-1649 (1988).
- Pischinger, S., and Heywood, J. B., How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel De- velopment in an SI Engine, SAE report 90-0021.
- Ko, Y., and Anderson, R. W., Electrode Heat Transfer During Spark Ignition, SAE report 89-2083.
- Borghese, A., Diana, M., Moccia, V., and Tamai, R., Combust. Sci. Technol. 76:219-231 (1991).
- Akram, M., AIAA J. 34(9):1835-1842 (1996).
- Kravchik, T., Sher, E., and Heywood, J. B., Combust. Sci. Technol. 108:1-30 (1995).
- Akindelle, O. O., Bradley, D., Mak, P. W., and Mc- Mahon, M., Combust. Flame 47:129-155 (1982).
- Scha ¨fer, M., "Der Zu ¨ndfunke," Dissertation, Institut fu ¨r Physikalische Elektronik, Universita ¨t Stuttgart, Germany, 1997.
- Sher, E., Ben-Ya'ish, J., and Kravchik, T., Combust. Flame 89:186-194 (1992).
- Hirschfelder, J. O., and Curtiss, C. F., Proc. Combust. Inst. 3:121-127 (1949).
- Maas, U., and Warnatz, J., IMPACT Comput. Sci. Eng. 1:394-420 (1989).
- Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, New York, 1975.
- Karbach, V., "Validierung eines detaillierten Reaktion- smechanismus zur Oxidation von Kohlenwasserstoffen bei hohen Temperaturen," Master thesis, Interdiszi- plina ¨res Zentrum fu ¨r Wissenschaftliches Rechnen, Universita ¨t Heidelberg, Germany, 1997.
- Selle, S., and Riedel, U., Ann. N. Y. Acad. Sci. 891:72- 80 (1999).
- Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Mo- lecular Theory of Gases and Liquids, John Wiley & Sons, New York, 1964.
- Ern, A., and Giovangigli, V., J. Comp. Phys. 120:105- 116 (1995).
- Yos, J. M., Transport Properties of Nitrogen, Hydro- gen, Oxygen and Air, tech. memo. RAD TM-63-7, AVCO Corp., Wilmington, MA, 1963.
- Deuflhard, H. E., and Zugck, J., One-Step and Ex- trapolation Methods for Differential/Algebraical Sys- tems, SFB 123 report No. 318, Universita ¨t Heidelberg, Germany, 1985.
- Riedel, U., Maas, U., and Warnatz, J., IMPACT Com- put. Sci. Eng. 5:20-52 (1993).