Academia.eduAcademia.edu

Outline

Earthquake Science and Seismic Risk Reduction

2003

https://doi.org/10.1007/978-94-010-0041-3

Abstract
sparkles

AI

The study explores the fundamental principles of earthquake science and methodologies for seismic risk reduction. It discusses models of earthquake mechanics, the significance of scaling laws, the energy balance during seismic events, and the importance of characterizing and predicting earthquakes through complex systems theories. The research addresses both theoretical models and practical implications for improving earthquake preparedness and response.

FAQs

sparkles

AI

What explains the limitations in predicting individual large earthquakes?add

The paper reveals that our understanding of earthquake physics is insufficient for deterministic predictions, as highlighted by the complex nature of lithospheric dynamics.

How does the lithosphere respond to stress buildup over geological timescales?add

The study finds that the lithosphere releases strain energy primarily through brittle failure, resulting in earthquakes rather than viscous deformation, which is prevalent in the mantle.

What role do building codes play in seismic risk reduction?add

The findings demonstrate that enforcing modern building codes significantly decreases risks; experiences from Greece and Turkey show substandard construction as a primary cause of casualties during earthquakes.

Why is there a mismatch between geological and human time scales in earthquake studies?add

The paper discusses that while mantle convection operates on scales of 10^8 years, we have only about 100 years of instrumental data, hampering our understanding of earthquake cycles.

How can geological studies improve our understanding of seismic hazards?add

The text emphasizes that geological studies extending back 10,000 years can provide crucial historical context that enhances hazard estimation methodologies.

References (41)

  1. Space-time history of faulting . . . . . . . . . . . . . . . 44
  2. 3 Scaling laws for earthquakes . . . . . . . . . . . . . . . . . . . . 46 2.3.1 The Gutenberg-Richter law . . . . . . . . . . . . . . . . . 46 2.3.2 Empirical roots of the Gutenberg-Richter law . . . . . . . 47 2.3.3 Moment-frequency relation . . . . . . . . . . . . . . . . 48
  3. 4 The elastic rebound model and its successors . . . . . . . . . . . 52 2.4.1 The time-and slip-predictable models . . . . . . . . . . . 53 2.4.2 The seismic gap hypothesis . . . . . . . . . . . . . . . . 55 2.4.3 The characteristic earthquake model . . . . . . . . . . . . 56
  4. 5 Nucleation or not? . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.5.1 Is there any evidence for a nucleation phase? . . . . . . . 58 2.5.2 Models of a hypothetical preparatory process . . . . . . . 59 2.5.3 Theoretical models . . . . . . . . . . . . . . . . . . . . . 60
  5. 6 What is an earthquake? Fracture, slip or both? . . . . . . . . . . . 62 2.6.1 Laboratory-based hypotheses . . . . . . . . . . . . . . . . 62 2.6.2 Stick-slip friction . . . . . . . . . . . . . . . . . . . . . . 63 2.6.3 Fracture mechanics . . . . . . . . . . . . . . . . . . . . . 68 2.6.4 Damage mechanics . . . . . . . . . . . . . . . . . . . . . 69
  6. 7 Stress: the basic yet unknown quantity . . . . . . . . . . . . . . . 73 2.7.1 Stress in the Earth's crust . . . . . . . . . . . . . . . . . . 74
  7. 8 Earthquake energy balance . . . . . . . . . . . . . . . . . . . . . 77 2.8.1 Earthquake energy function . . . . . . . . . . . . . . . . 77 2.8.2 Earthquakes as a three stage process . . . . . . . . . . . . 82 2.8.3 The size of the earthquake . . . . . . . . . . . . . . . . . 85
  8. 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3 Physics of complex systems and earthquakes 102
  9. 1 Phase transitions, criticality, and self-similarity . . . . . . . . . . 103
  10. 1.1 Subcriticality and supercriticality . . . . . . . . . . . . . 108
  11. 1.2 Universality . . . . . . . . . . . . . . . . . . . . . . . . . 108
  12. 2 Scale invariance: the analytical approach . . . . . . . . . . . . . . 109
  13. 3 Scale invariance: the geometrical approach . . . . . . . . . . . . 111 3.3.1 Measuring an object's fractal dimension . . . . . . . . . . 112 3.3.2 Multifractals . . . . . . . . . . . . . . . . . . . . . . . . 114
  14. 3.3 The empirical origin of fractality . . . . . . . . . . . . . . 115 3.3.4 Deterministic low-dimensional chaos: hope for predictabil- ity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
  15. 4 Characterizing scale-invariant systems . . . . . . . . . . . . . . . 117 3.4.1 Log-log plots . . . . . . . . . . . . . . . . . . . . . . . . 118 3.4.2 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . 118
  16. 5 Modeling scale invariant systems . . . . . . . . . . . . . . . . . . 119
  17. 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  18. Earthquake prediction and public policy 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  19. 1.1 Why should we care now? . . . . . . . . . . . . . . . . .
  20. 1.2 Ethical considerations . . . . . . . . . . . . . . . . . . .
  21. 1.3 Definitions of earthquake prediction . . . . . . . . . . . .
  22. 1.4 Proposals for earthquake prediction research . . . . . . .
  23. 2 Views of social scientists . . . . . . . . . . . . . . . . . . . . . .
  24. 2.1 Report of NAS Panel in 1975 . . . . . . . . . . . . . . .
  25. 2.2 Social science research . . . . . . . . . . . . . . . . . . .
  26. 2.3 Costs and benefits of short-term earthquake prediction . .
  27. U.S. earthquake prediction program . . . . . . . . . . . . . . . .
  28. 3.1 Current Federal and State laws . . . . . . . . . . . . . . .
  29. 3.2 NEPEC . . . . . . . . . . . . . . . . . . . . . . . . . . .
  30. 3.3 Parkfield earthquake prediction experiment . . . . . . . .
  31. Japan's earthquake prediction program . . . . . . . . . . . . . . .
  32. 4.1 Long-term forecast of the 'Tokai earthquake' . . . . . . .
  33. 4.2 System for short-term prediction . . . . . . . . . . . . . .
  34. 4.3 Public perception . . . . . . . . . . . . . . . . . . . . . .
  35. 5 Public reactions to predictions . . . . . . . . . . . . . . . . . . .
  36. 5.1 Codes of practice for earthquake prediction . . . . . . . .
  37. 5.2 Publicly announced predictions . . . . . . . . . . . . . .
  38. 5.3 Common features . . . . . . . . . . . . . . . . . . . . . .
  39. 5.4 Countermeasures . . . . . . . . . . . . . . . . . . . . . .
  40. 6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . .
  41. 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .