Academia.eduAcademia.edu

Outline

Term rewriting for normalization by evaluation

2003, Information and Computation

https://doi.org/10.1016/S0890-5401(03)00014-2

Abstract

We e xtend normalization by e v aluation (rst presented in 5]) from the pure typed-calculus to general higher type term rewriting systems. We d istinguish between computational rules and proper rewrite rules, and de ne a domain theoretic model intended to explain why n ormalization by e v aluation for the former is much m ore e cient. Normalization by evaluation is proved to be correct w.r.t. this model.

References (11)

  1. Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of a reduction free normalization proof. In CTCS'95, Cam- bridge, v olume 953 of Lecture Notes in Computer Science, p a g e s 182{199. Springer Verlag, Berlin, Heidelberg, New York, 1995.
  2. Holger Benl, Ulrich Berger, Helmut Schwichtenberg, Monika S e i s e n berger, and Wolfgang Zuber. Proof theory at work: Program development i n t h e Minlog system. In W. Bibel and P.H. Schmitt, editors, Automated D e duc- tion { A Basis for Applications, v olume II: Systems and Implementation Techniques of Applied L ogic Series, p a g e s 41{71. Kluwer Academic Pub- lishers, Dordrecht, 1998.
  3. Ulrich B e r g er. Continuous functionals of dependent and trans nite types. Habilitationsschrift, Mathematisches Institut der Universit at M unchen, 1997.
  4. Ulrich B erger, Matthias Eberl, and Helmut Schwichtenberg. Normalization by e v aluation. In B. M oller and J.V. Tucker, editors, Prospects for Hard- ware F oundations, n umber 1 546 in LNCS, pages 117{137. Springer Verlag, Berlin, Heidelberg, New York, 1998.
  5. Ulrich B e r ger and Helmut Schwichtenberg. An i n verse of the evaluation functional for typed {calculus. In R. Vemuri, editor, Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science, p a g e s 203{ 211. IEEE Computer Society Press, Los Alamitos, 1991.
  6. Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normalization proofs. Mathematical Structures in Computer Science, 7 : 7 3{ 94, 1997.
  7. Roy L . Crole. Categories for Types. C a m bridge University Press, 1993.
  8. Olivier Danvy. Pragmatics of type-directed partial evaluation. In O. Danvy, R. Gl uck, and P. Thiemann, editors, Partial Evaluation, v olume 1110 of LNCS, p ages 73{94. Springer Verlag, Berlin, Heidelberg, New York, 1996.
  9. N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church{Rosser theorem. Indagationes Math., 3 4 : 381{392, 1972.
  10. J. Lambek and P. S cott. Introduction to higher order categorical logic, volume 7 of Cambridge Studies in Advanced M a t hematics. C a m bridge Uni- versity Press, 1986.
  11. John McCarthy. Recursive f unctions of symbolic expressions and their com- putation by machine. Communications of the ACM, 3 ( 4 ):184{195, 1960.