Academia.eduAcademia.edu

Outline

Adaptation of Tensor Voting to Image Structure Estimation

2012, Mathematics and Visualization

https://doi.org/10.1007/978-3-642-27343-8_2

Abstract

Tensor voting is a well-known robust technique for extracting perceptual information from clouds of points. This chapter proposes a general methodology to adapt tensor voting to different types of images in the specific context of image structure estimation. This methodology is based on the structural relationships between tensor voting and the so-called structure tensor, which is the most popu-1 2 R. Moreno et al.

References (49)

  1. Arseneau, S., Cooperstock, J.R.: An improved representation of junctions through asymmetric tensor diffusion. In: Proc. Int. Symp. Visual Computing (ISVC), Lect. Notes Comput. Sci. 4291, pp. I:363-372 (2006)
  2. Bigün, J., Bigun, T., Nilsson, K.: Recognition by symmetry derivatives and the generalized structure tensor. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1590-1605 (2004)
  3. Bigün, J., Granlund, G., Wiklund, J.: Multidimensional orientation estimation with applica- tions to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 775-790 (1991)
  4. Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Image Vis. Com- put. 24(1), 41-55 (2006)
  5. Bruce, V., Green, P.R., Georgeson, M.A.: Visual Perception: physiology, psychology and ecol- ogy, fourth edn. Psychology Press (2003)
  6. Burgeth, B., Didas, S., Weickert, J.: A general structure tensor concept and coherence- enhancing diffusion filtering for matrix fields. In: D. Laidlaw, J. Weikert (eds.) Visualization and Processing of Tensor Fields: Advances and Perspectives, pp. 305-323. Springer (2009)
  7. Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis., Graphics, and Image Process. 33(1), 116-125 (1986)
  8. Farnebäck, G., Rydell, J., Ebbers, T., Andersson, M., Knutsson, H.: Efficient computation of the inverse gradient on irregular domains. In: Int. Conf. Comput. Vis. (ICCV), pp. 1-8 (2007)
  9. Felsberg, M., Jonsson, E.: Energy tensors: Quadratic, phase invariant image operators. In: Proc. Symp. Ger. Assoc. Pattern Recognit. (DAGM), Lecture Notes in Computer Science, vol. 3663, pp. 493-500 (2005)
  10. Förstner, W.: A feature based correspondence algorithm for image matching. In: Int. Arch. of Photogramm. and Remote Sens., vol. 26, pp. 150-166 (1986)
  11. Förstner, W.: A framework for low-level feature extraction. In: Proc. Eur. Conf. Comput. Vis. (ECCV), Lect. Notes Comput. Sci. 801, pp. 383-394 (1994)
  12. Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Press (1995)
  13. Hahn, J., Lee, C.O.: A nonlinear structure tensor with the diffusivity matrix composed of the image gradient. J. Math. Imaging Vis. 34, 137-151 (2009)
  14. Hwang, C., Zhuang, S., Lai, S.H.: Efficient intra mode selection using image structure tensor for H.264/AVC. In: Proc. Int. Conf. on Image Process. (ICIP), pp. V:289-292 (2007)
  15. Jia, J., Tang, C.K.: Inference of segmented color and texture description by tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 771-786 (2004)
  16. Kenney, C., Zuliani, M., Manjunath, B.: An axiomatic approach to corner detection. In: Proc. Comput. Vis. Pattern Recognit. (CVPR), pp. I:191-197 (2005)
  17. Kim, H.S., Choi, H.K., Lee, K.H.: Feature detection of triangular meshes based on tensor voting theory. Comput.-Aided Des. 41(1), 47-58 (2009)
  18. Kindlmann, G., Ennis, D.B., Whitaker, R., Westin, C.F.: Diffusion tensor analysis with invari- ant gradients and rotation tangents. IEEE Trans. Med. Imag. 26(11), 1483-1499 (2007)
  19. Knutsson, H.: A tensor representation of 3-D structures. In: Proc. Workshop on Multidimens. Signal Process. (1987)
  20. Köthe, U.: Edge and junction detection with an improved structure tesnsor. In: Proc. Symp. Ger. Assoc. Pattern Recognit. (DAGM), Lect. Notes Comput. Sci. 2781, pp. 25-32 (2003)
  21. Köthe, U., Felsberg, M.: Riesz-transforms versus derivatives: On the relationship between the boundary tensor and the energy tensor. In: Scale Space and PDE Methods in Computer Vision, Lecture Notes in Computer Science, vol. 3459, pp. 179-191 (2005)
  22. Lim, J., Park, J., Medioni, G.: Text segmentation in color images using tensor voting. Image Vis. Comput. 25(5), 671-685 (2007)
  23. Loss, L.A., Bebis, G., Parvin, B.: Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures: Application to adherens junctions. IEEE Trans. Med. Imag. (2011). In press
  24. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Imaging Underst. Workshop, pp. 121-130 (1981)
  25. Massad, A., M., B., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images. In: Proc. Symp. Ger. Assoc. Pattern Recognit. (DAGM), Lect. Notes Comput. Sci. 2449, pp. 306-313 (2002)
  26. Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Feature Extraction and Segmentation. Elsevier Science (2000)
  27. Min, C., Medioni, G.: Inferring segmented dense motion layers using 5D tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1589-1602 (2008)
  28. Mordohai, P., Medioni, G.: Dimensionality estimation, manifold learning and function ap- proximation using tensor voting. J. of Mach. Learn. 11, 411-450 (2010)
  29. Moreno, R., Garcia, M.A., Puig, D.: Graph-based perceptual segmentation of stereo vision 3D images at multiple abstraction levels. In: Proc. Workshop on Graph-based Represent. in Pattern Recognit. (GbRPR), Lect. Notes Comput. Sci. 4538, pp. 148-157 (2007)
  30. Moreno, R., Garcia, M.A., Puig, D.: Robust color image segmentation through tensor voting. In: Proc. Int. Conf. Pattern Recognit. (ICPR), pp. 3372-3375 (2010)
  31. Moreno, R., Garcia, M.A., Puig, D., Julià, C.: On adapting the tensor voting framework to robust color image denoising. In: Proc. Comput. Anal. Images and Patterns (CAIP), Lect. Notes Comput. Sci. 5702, vol. 5702, pp. 492-500 (2009)
  32. Moreno, R., Garcia, M.A., Puig, D., Julià, C.: Robust color edge detection through tensor voting. In: Proc. Int. Conf. Image Process. (ICIP), pp. 2153-2156 (2009)
  33. Moreno, R., Garcia, M.A., Puig, D., Pizarro, L., Burgeth, B., Weickert, J.: On improving the efficiency of tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. (2011). In press
  34. Nagel, H.H., Gehrke, A.: Spatiotemporally adaptive estimation and segmentation of OF-fields. In: Proc. Eur. Conf. Comput. Vis. (ECCV), Lect. Notes Comput. Sci. 1407, pp. 86-102 (1998)
  35. Nath, S., Palaniappan, K.: Adaptive robust structure tensors for orientation estimation and image segmentation. In: Proc. Int. Symp. Vis. Comput. (ISVC), Lect. Notes Comput. Sci. 3804, pp. 445-453 (2005)
  36. Nicolescu, M., Medioni, G.: A voting-based computational framework for visual motion anal- ysis and interpretation. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 739-752 (2005)
  37. Pajevic, S., Aldroubi, A., Basser, P.J.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. J. of Magn. Reson. 154, 85-100 (2002)
  38. Rao, A.R., Schunck, B.G.: Computing oriented texture fields. CVGIP: Graph. Models Image Process. 53, 157-185 (1991)
  39. Rohr, K.: Localization properties of direct corner detectors. J. Math. Imaging and Vis. 4, 139-150 (1994)
  40. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Proc. Comput. Vis. Pattern Recognit. (CVPR), pp. II-699-704 (2003)
  41. Schultz, T., Seidel, H.P.: Estimating crossing fibers: A tensor decomposition approach. IEEE Trans. Vis. Comput. Graphics 14(6), 1635-1642 (2008)
  42. Tai, Y.W., Tong, W.S., Tang, C.K.: Perceptually-inspired and edge-directed color image super- resolution. In: Proc. Comput. Vis. and Pattern Recognit. (CVPR), pp. II:1948-1955 (2006)
  43. Tang, C.K., Medioni, G., Lee, M.S.: N-Dimensional tensor voting and application to epipolar geometry estimation. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 829-844 (2001)
  44. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2-3), 111-127 (1999)
  45. Weickert, J.: Coherence-enhancing diffusion of colour images. Image Vis. Comput. 17, 199- 212 (1999)
  46. Weickert, J., Brox, T.: Diffusion and regularization of vector-and matrix-valued images. In: M.Z. Nashed, O. Scherzer (eds.) Inverse Problems, Image Analysis, and Medical Imaging, pp. 251-268. AMS, Providence (2002)
  47. van de Weijer, J., van den Boomgaard, R.: Least squares and robust estimation of local image structure. Int. J. Comput. Vis. 64(2/3), 143-155 (2005)
  48. Westin, C.F., Knutsson, H.: Tensor field regularization using normalized convolution. In: Proc. Int. Conf. Comput. Aided Syst. Theory (EUROCAST), Lect. Notes Comput. Sci. 2809, pp. 564-572 (2003)
  49. Wu, T.P., Yeung, S.K., Jia, J., Tang, C.K.: Quasi-dense 3D reconstruction using tensor-based multiview stereo. In: Proc. Comput. Vis. Pattern Recognit. (CVPR), pp. 1482-1489 (2010)