Academia.eduAcademia.edu

Outline

A Reproducing Kernel Hilbert Space Framework for ITL

2010, Information Science and Statistics

https://doi.org/10.1162/NECO.2008.09-07-614

Abstract

This paper presents a general framework based on reproducing kernel Hilbert spaces (RKHS) to mathematically describe and manipulate spike trains. The main idea is the definition of inner products to allow spike train signal processing from basic principles while incorporating their statistical description as point processes. Moreover, because many inner products can be formulated, a particular definition can be crafted to best fit an application. These ideas are illustrated by the definition of a number of spike train inner products. To further elicit the advantages of the RKHS framework, a family of these inner products, called the cross-intensity (CI) kernels, is further analyzed in detail. This particular inner product family encapsulates the statistical description from conditional intensity functions of spike trains. The problem of their estimation is also addressed. The simplest of the spike train kernels in this family provides an interesting perspective to other works presented in the literature, as will be illustrated in terms of spike train distance measures. Finally, as an application example, the presented RKHS framework is used to derive from simple principles a clustering algorithm for spike trains.

References (43)

  1. N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68(3):337-404, May 1950.
  2. C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions. Springer-Verlag, New York, NY, 1984.
  3. S. M. Bohte, J. N. Kok, and H. L. Poutré. Error-backpropagation in temporally en- coded networks of spiking neurons. Neurocomp., 48(1-4):17-37, Oct. 2002. doi: 10.1016/S0925-2312(01)00658-0.
  4. E. N. Brown, R. E. Kass, and P. P. Mitra. Multiple neural spike train data analysis: state- of-the-art and future challenges. Nature Neurosci., 7:456-461, 2004. doi: 10.1038/nn1228.
  5. A. Carnell and D. Richardson. Linear algebra for time series of spikes. In Proc. European Symp. on Artificial Neural Networks, pages 363-368, Bruges, Belgium, Apr. 2005.
  6. Z. Chi and D. Margoliash. Temporal precision and temporal drift in brain and behavior of zebra finch song. Neuron, 32(1-20):899-910, Dec. 2001.
  7. Z. Chi, W. Wu, Z. Haga, N. G. Hatsopoulos, and D. Margoliash. Template-based spike pat- tern identification with linear convolution and dynamic time warping. J. Neurophysiol., 97(2):1221-1235, Feb. 2007. doi: 10.1152/jn.00448.2006.
  8. D. R. Cox and V. Isham. Point Processes. Chapman and Hall, 1980.
  9. P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA, USA, 2001.
  10. P. Diggle and J. S. Marron. Equivalence of smoothing parameter selectors in density and intensity estimation. J. Am. Stat. Assoc., 83(403):793-800, Sept. 1988.
  11. D. A. Harville. Matrix algebra from a statistician's perspective. Springer, 1997.
  12. T. Kailath. RKHS approach to detection and estimation problems-part I: Deterministic signals in gaussian noise. IEEE Trans. Inform. Theory, 17(5):530-549, Sept. 1971.
  13. T. Kailath and D. L. Duttweiler. An RKHS approach to detection and estimation problems- part III: Generalized innovations representations and a likelihood-ratio formula. IEEE Trans. Inform. Theory, 18(6):730-745, Nov. 1972.
  14. R. E. Kass and V. Ventura. A spike-train probability model. Neural Comp., 13(8):1713- 1720, Aug. 2001.
  15. R. E. Kass, V. Ventura, and C. Cai. Statistical smoothing of neuronal data. Network: Comp. Neural Sys., 14:5-15, 2003.
  16. R. E. Kass, V. Ventura, and E. N. Brown. Statistical issues in the analysis of neuronal data. J. Neurophysiol., 94:8-25, 2005. doi: 10.1152/jn.00648.2004.
  17. S. B. Lowen and M. C. Teich. Fractal-Based Point Processes. Wiley, 2005. ISBN 0-471- 38376-7.
  18. W. Maass and C. M. Bishop, editors. Pulsed Neural Networks. MIT Press, 1998.
  19. W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comp., 14(11): 2531-2560, 2002. doi: 10.1162/089976602760407955.
  20. K. V. Mardia and P. E. Jupp. Directional Statistics. John Wiley & Sons, West Sussex, England, 2000. ISBN 0-471-95333-4.
  21. E. H. Moore. On properly positive Hermitian matrices. Bull. Am. Math. Soc., 23:59, 1916.
  22. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances Neural Information Processing Systems, volume 14, 2001.
  23. A. R. C. Paiva, J.-W. Xu, and J. C. Príncipe. Kernel principal components are maximum entropy projections. In Proc. Int. Conf. on Independent Component Analysis and Blind Source Separation, ICA-2006, pages 846-853, Charleston, SC, Mar. 2006. doi: 10.1007/ 11679363 105.
  24. A. R. C. Paiva, S. Rao, I. Park, and J. C. Príncipe. Spectral clustering of synchronous spike trains. In Proc. IEEE Int. Joint Conf. on Neural Networks, IJCNN-2007, Orlando, FL, USA, Aug. 2007.
  25. A. R. C. Paiva, I. Park, and J. C. Príncipe. Reproducing kernel hilbert spaces for spike train analysis. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP-2008, Las Vegas, NV, USA, Apr. 2008a.
  26. A. R. C. Paiva, I. Park, and J. C. Príncipe. Optimization in reproducing kernel Hilbert spaces of spike trains. In Computational Neuroscience. Springer, 2008b. in press.
  27. E. Parzen. On the estimation of a probability density function and the mode. Annals Math. Stat., 33(2):1065-1076, Sept. 1962.
  28. E. Parzen. Statistical inference on time series by Hilbert space methods. Technical Re- port 23, Applied Mathematics and Statistics Laboratory, Stanford University, Stanford, California, Jan. 1959.
  29. D. H. Perkel, G. L. Gerstein, and G. P. Moore. Neuronal spike trains and stochastic point processes. II. simultaneous spike trains. Biophys. J., 7(4):419-440, July 1967.
  30. J. C. Príncipe, D. Xu, and J. W. Fisher. Information theoretic learning. In S. Haykin, editor, Unsupervised Adaptive Filtering, volume 2, pages 265-319. John Wiley & Sons, 2000.
  31. R.-D. Reiss. A Course on Point Processes. Springer-Verlag, New York, NY, 1993.
  32. B. J. Richmond, L. M. Optican, and H. Spitzer. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J. Neurophysiol., 64(2):351-369, Aug. 1990.
  33. B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigen- value problem. Neural Comp., 10(5):1299-1319, 1998.
  34. B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods: Support Vector Learning. MIT Press, 1999.
  35. B. Schrauwen and J. V. Campenhout. Linking non-binned spike train kernels to several existing spike train distances. Neurocomp., 70(7-8):1247-1253, Mar. 2007. doi: 10.1016/ j.neucom.2006.11.017.
  36. S. Schreiber, J. M. Fellous, D. Whitmer, P. Tiesinga, and T. J. Sejnowski. A new correlation- based measure of spike timing reliability. Neurocomp., 52-54:925-931, June 2003. doi: 10.1016/S0925-2312(02)00838-X.
  37. D. L. Snyder. Random Point Process in Time and Space. John Viley & Sons, New York, 1975.
  38. W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol., 93:1074-1089, Feb. 2005. doi: 10.1152/jn. 00697.2004.
  39. M. C. W. van Rossum. A novel spike distance. Neural Comp., 13(4):751-764, 2001.
  40. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
  41. J. D. Victor. Spike train metrics. Current Opinion in Neurobiology, 15(5):585-592, Sept. 2005. doi: 10.1016/j.conb.2005.08.002.
  42. J. D. Victor and K. P. Purpura. Metric-space analysis of spike trains: theory, algorithms, and application. Network: Comp. Neural Sys., 8:127-164, Oct. 1997.
  43. G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Con- ference Series in Applied Mathematics. SIAM, 1990.