EXCESS workshop: Descriptions of rising low-energy spectra
SciPost Physics Proceedings
https://doi.org/10.21468/SCIPOSTPHYSPROC.9Abstract
Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore...
References (95)
- A. Aguilar-Arevalo et al., The CONNIE experiment, J. Phys. Conf. Ser. 761, 012057 (2016), doi:10.1088/1742-6596/761/1/012057.
- A. H. Abdelhameed et al., First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100, 102002 (2019), doi:10.1103/PhysRevD.100.102002.
- A. Aguilar-Arevalo et al., Results on Low-Mass Weakly Interacting Massive Particles from an 11 kg d Target Exposure of DAMIC at SNOLAB, Phys. Rev. Lett. 125, 241803 (2020), doi:10.1103/PhysRevLett.125.241803.
- E. Armengaud et al., Searching for low-mass dark matter particles with a mas- sive Ge bolometer operated above ground, Phys. Rev. D 99, 082003 (2019), doi:10.1103/PhysRevD.99.082003.
- Q. Arnaud et al., First Germanium-Based Constraints on Sub-MeV Dark Mat- ter with the EDELWEISS Experiment, Phys. Rev. Lett. 125, 141301 (2020), doi:10.1103/PhysRevLett.125.141301.
- G. Agnolet et al., Background studies for the MINER Coherent Neutrino Scattering reactor experiment, Nucl. Instrum. Meth. A 853, 53 (2017), doi:10.1016/j.nima.2017.02.024.
- Q. Arnaud et al., First results from the NEWS-G direct dark matter search experiment at the LSM, Astropart. Phys. 97, 54 (2018), doi:10.1016/j.astropartphys.2017.10.009.
- J. Rothe et al., NUCLEUS: Exploring Coherent Neutrino-Nucleus Scattering with Cryogenic Detectors, J. Low Temp. Phys. 199, 433 (2020), doi:10.1007/s10909-019-02283-7.
- J. Billard et al., Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex, J Phys. G Nucl. Part. Phys. 44, 105101 (2017), doi:10.1088/1361- 6471/aa83d0.
- L. Barak et al., SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skip- per CCD, Phys. Rev. Lett. 125, 171802 (2020), doi:10.1103/PhysRevLett.125.171802.
- R. Agnese et al., First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector, Phys. Rev. Lett. 121, 051301 (2018), doi:10.1103/PhysRevLett.121.051301.
- D. W. Amaral et al., Constraints on low-mass, relic dark matter candidates from a surface- operated SuperCDMS single-charge sensitive detector, Phys. Rev. D 102, 091101 (2020), doi:10.1103/PhysRevD.102.091101.
- I. Alkhatib et al., Light dark matter search with a high-resolution athermal phonon detector operated above ground, Phys. Rev. Lett. 127, 061801 (2021), doi:10.1103/PhysRevLett.127.061801.
- E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, L. Althueser, F. D. Amaro, V. C. Antochi, E. An- gelino, J. R. Angevaare, F. Arneodo, D. Barge, L. Baudis et al., Excess electronic recoil events in xenon1t, Phys. Rev. D 102, 072004 (2020), doi:10.1103/PhysRevD.102.072004.
- EXCESS workshop, Data repository of the excess workshop (2021), https://github.com/fewagner/excess.
- EXCESS workshop, Indico page of the excess workshop (2021), https://indico.cern.ch/event/1013203/.
- N. Kurinsky, D. Baxter, Y. Kahn and G. Krnjaic, Dark matter interpretation of ex- cesses in multiple direct detection experiments, Phys. Rev. D 102, 015017 (2020), doi:10.1103/PhysRevD.102.015017.
- R. Harnik, R. Plestid, M. Pospelov and H. Ramani, Millicharged cosmic rays and low recoil detectors, Phys. Rev. D 103, 075029 (2021), doi:10.1103/PhysRevD.103.075029.
- S. Knapen, J. Kozaczuk and T. Lin, Migdal Effect in Semiconductors, Phys. Rev. Lett. 127, 081805 (2021), doi:10.1103/PhysRevLett.127.081805.
- P. Abbamonte, D. Baxter, Y. Kahn, G. Krnjaic, N. Kurinsky, B. Mandava and L. K. Wagner, Revisiting the Dark Matter Interpretation of Excess Rates in Semiconductors, Phys. Rev. D 105, 123002 (2022), doi:10.1103/PhysRevD.105.123002.
- M. Heikinheimo, S. Sassi, K. Nordlund, K. Tuominen and N. Mirabolfathi, Identifi- cation of the low energy excess in dark matter searches with crystal defects (2021), arXiv:2112.14495.
- E. E. Haller et al., Neutron transmutation doped natural and isotopically engineered ger- manium thermistors, In D. L. Crawford and E. R. Craine, eds., Instrumentation in As- tronomy VIII, 2198, 630, International Society for Optics and Photonics, SPIE (1994), doi:10.1117/12.176771.
- N. Wang, F. C. Wellstood, B. Sadoulet, E. E. Haller and J. Beeman, Electrical and thermal properties of neutron-transmutation-doped ge at 20 mk, Phys. Rev. B 41, 3761 (1990), doi:10.1103/PhysRevB.41.3761.
- B. Cabrera, Introduction to TES physics, J. Low Temp. Phys. 151, 82 (2008).
- K. D. Irwin, S. W. Nam, B. Cabrera, B. Chugg and B. A. Young, A quasiparticle-trap-assisted transition-edge sensor for phonon-mediated particle detection, Rev. Sci. Instrum. 66, 5322 (1995), doi:10.1063/1.1146105.
- B. S. Neganov and V. N. Trofimov, Calorimetric method measuring ionizing radiation, Otkryt. Izobret. 146, 215 (1985).
- P. N. Luke, Voltage-assisted calorimetric ionization detector, J. Applied Phys. 64, 6858 (1988), doi:10.1063/1.341976.
- A. H. Abdelhameed et al., First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100, 102002 (2019), doi:10.1103/PhysRevD.100.102002.
- G. Angloher et al., Limits on WIMP dark matter using scintillating CaWO4 cryo- genic detectors with active background suppression, Astropart. Phys. 23, 325 (2005), doi:10.1016/j.astropartphys.2005.01.006.
- G. Angloher et al., Commissioning run of the CRESST-II dark matter search, Astropart. Phys. 31, 270 (2009), doi:10.1016/j.astropartphys.2009.02.007.
- M. Mancuso et al., A method to define the energy threshold depending on noise level for rare event searches, Nucl. Instrum. Meth. A 940, 492 (2019), doi:10.1016/j.nima.2019.06.030.
- M. Stahlberg, Probing Low-Mass Dark Matter with CRESST-III, Dissertation, Technische Universität Wien, Wien (2020).
- R. Strauss et al., Beta/gamma and alpha backgrounds in CRESST-II phase 2, J. Cosmol. Astropart. Phys. 030 (2015), doi:10.1088/1475-7516/2015/06/030.
- A. H. Abdelhameed et al., Description of CRESST-III Data, arXiv:1905.07335.
- P. M. M. Bauer, Data Analysis for the CRESST Experiment: New Methods, improved Alpha Analysis, and Results on Light Dark Matter and Backgrounds, Dissertation, Technische Universität München, München (2020).
- T. Salagnac et al., Optimization and performance of the CryoCube detector for the future RICOCHET low-energy neutrino experiment, arXiv:2111.12438.
- G. Beaulieu et al., Ricochet Progress and Status, In 19th International Workshop on Low Temperature Detectors (2021), arXiv:2111.06745.
- E. Armengaud et al., Performance of the EDELWEISS-III experiment for direct dark matter searches, J. Instrum. 12, P08010 (2017), doi:10.1088/1748-0221/12/08/p08010.
- J. Billard, Searching for Dark Matter and New Physics in the Neutrino sector with Cryogenic detectors (Habilitation à diriger des recherches) (2021), https://tel.archives- ouvertes.fr/tel-03259707.
- D. Misiak, Développements de nouveaux détecteurs cryogéniques bas seuils pour la recherche de matière noire légère et la physique des neutrinos de basse énergie, Dissertation, Université de Lyon (2021).
- C. Hagmann, D. Lange and D. Wright, Cosmic-ray shower generator (cry) for monte carlo transport codes, In 2007 IEEE Nuclear Science Symposium Conference Record 2, 1143 (2007), doi:10.1109/NSSMIC.2007.4437209.
- L. Hehn et al., Improved EDELWEISS-III sensitivity for low-mass wimps using a profile likelihood approach, Eur. Phys. J. C 76, 548 (2016), doi:10.1140/epjc/s10052-016-4388- y.
- G. Baulieu et al., HEMT-based 1K front-end electronics for the heat and ionization Ge Cry- oCube of the future RICOCHET CEνNS experiment, In 19th International Workshop on Low Temperature Detectors (2021), arXiv:2111.10308.
- A. Anderson, Phonon-Based Position Determination in SuperCDMS iZIP Detectors, J. Low Temp. Phys. 176, 959 (2014), doi:10.1007/s10909-013-1015-2.
- R. Strauss et al., Gram-scale cryogenic calorimeters for rare-event searches, Phys. Rev. D 96, 022009 (2017), doi:10.1103/PhysRevD.96.022009.
- G. Angloher et al., Results on MeV-scale dark matter from a gram-scale cryogenic calorime- ter operated above ground, Eur. Phys. J. C 77, 637 (2017), doi:10.1140/epjc/s10052- 017-5223-9.
- J. F. M. Rothe, Low-Threshold Cryogenic Detectors for Low-Mass Dark Matter Search and Coherent Neutrino Scattering, Dissertation, Technische Universität München, München (2021).
- F. Pröbst, M. Frank, S. Cooper, P. Colling, D. Dummer, P. Ferger, G. Forster, A. Nuc- ciotti, W. Seidel and L. Stodolsky, Model for cryogenic particle detectors with su- perconducting phase transition thermometers, J. Low Temp. Phys. 100, 69 (1995), doi:10.1007/BF00753837.
- R. K. Romani et al., Thermal detection of single e-h pairs in a biased silicon crystal detector, Appl. Phys. Lett. 112, 043501 (2018), doi:10.1063/1.5010699.
- SuperCDMS, SuperCDMS Public Documentation HVeV Run 2, https://supercdms.slac.stanford.edu/hvevr2-0, Last accessed on 2021-11-04.
- R. Ren et al., Design and characterization of a phonon-mediated cryogenic particle detector with an eV-scale threshold and 100 keV-scale dynamic range, Phys. Rev. D 104, 032010 (2021), doi:10.1103/PhysRevD.104.032010.
- F. Ponce et al., Measuring the impact ionization and charge trapping probabilities in SuperCDMS HVeV phonon sensing detectors, Phys. Rev. D 101, 031101(R) (2020), doi:10.1103/PhysRevD.101.031101.
- K. Ramanathan and N. Kurinsky, Ionization yield in silicon for eV-scale electron-recoil pro- cesses, Phys. Rev. D 102, 063026 (2020), doi:10.1103/physrevd.102.063026.
- E. Gatti and P. Manfredi, Processing the signals from solid-state detectors in elementary- particle physics, Riv. Nuovo Cim. 9, 1 (1986), doi:10.1007/BF02822156.
- C. W. Fink et al., Performance of a large area photon detector for rare event search applica- tions, Appl. Phys. Lett. 118, 022601 (2021), doi:10.1063/5.0032372.
- S. J. B. Reed and N. G. Ware, Escape peaks and internal fluorescence in x-ray spectra recorded with lithium drifted silicon detectors, J. Phys. E Sci. Instrum. 5, 582 (1972), doi:10.1088/0022-3735/5/6/029.
- P. Du et al., Sources of Low-Energy Events in Low-Threshold Dark Matter Detectors, Phys. Rev. X 12, 011009 (2022), doi:10.1103/PhysRevX.12.011009.
- S. Holland et al., Snowmass 2021 Letter of Interest: Charge-Coupled De- vice Technology Development for Future Dark Energy and Dark Matter Studies, https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF2_IF1- CF4_CF1_Steve_Holland-133.pdf.
- R. Essig et al., Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85, 076007 (2012), doi:10.1103/PhysRevD.85.076007.
- R. Essig et al., Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, arXiv:1509.01598.
- J. Tiffenberg, M. Sofo-Haro, A. Drlica-Wagner, R. Essig, Y. Guardincerri, S. Holland, T. Volansky and T.-T. Yu, Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119, 131802 (2017), doi:10.1103/PhysRevLett.119.131802.
- A. Aguilar-Arevalo et al., Search for low-mass WIMPs in a 0.6 kg day expo- sure of the DAMIC experiment at SNOLAB, Phys. Rev. D 94, 082006 (2016), doi:10.1103/PhysRevD.94.082006.
- F. Duncan et al., The construction and anticipated science of SNOLAB, Annu. Rev. Nucl. Part. 60, 163 (2010), doi:10.1146/annurev.nucl.012809.104513.
- I. S. Mclean et al., Status of the Dark Energy Survey Camera (DECam) project, Ground-based and Airborne Instrumentation for Astronomy IV 8446, 844611 (2012), doi:10.1117/12.926216.
- B. Flaugher et al., The Dark Energy Camera, Astron. J. 150, 150 (2015), doi:10.1088/0004-6256/150/5/150.
- A. Aguilar-Arevalo et al., Characterization of the background spectrum in DAMIC at SNO- LAB, Phys. Rev. D 105, 062003 (2022), doi:10.1103/PhysRevD.105.062003.
- A. E. Chavarria et al., DAMIC at SNOLAB, J. Phys. Conf. Ser. 1342, 012057 (2020), doi:10.1088/1742-6596/1342/1/012057.
- J. R. Janesick, Scientific charge-coupled devices, vol. 83, SPIE press (2001).
- A. Aguilar-Arevalo et al., Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB, Phys. Rev. Lett. 123, 181802 (2019), doi:10.1103/PhysRevLett.123.181802.
- E. Hoppe et al., Reduction of radioactive backgrounds in electroformed copper for ultra-sensitive radiation detectors, Nucl. Instrum. Meth. A 764, 116 (2014), doi:https://doi.org/10.1016/j.nima.2014.06.082.
- A. E. Chavarria et al., Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector, Phys. Rev. D 94, 082007 (2016), doi:10.1103/PhysRevD.94.082007.
- A. Aguilar-Arevalo et al., Results on low-mass weakly interacting massive particles from a 11 kg-day target exposure of DAMIC at SNOLAB, Phys. Rev. Lett. 125, 241803 (2020), doi:10.1103/PhysRevLett.125.241803.
- L. Barak et al., SENSEI: Direct-Detection Results on sub-GeV Dark Mat- ter from a New Skipper-CCD, Phys. Rev. Lett. 125, 171802 (2020), doi:10.1103/PhysRevLett.125.171802.
- P. Adamson et al., Observation of muon intensity variations by season with the MINOS Near Detector, Phys. Rev. D 90, 012010 (2014), doi:10.1103/PhysRevD.90.012010.
- L. Barak et al., SENSEI: Characterization of Single-Electron Events Using a Skipper-CCD, Phys. Rev. Applied 17, 014022 (2022), doi:10.1103/PhysRevApplied.17.014022.
- Sunpower cyocoolers, http://www.sunpowerinc.com/products/stirling- cryocoolers/cryotel-cryocoolers.
- G. I. Cancelo et al., Low threshold acquisition controller for Skipper charge-coupled devices, J. Astron. Telesc. Instrum. 7, 1 (2021), doi:10.1117/1.JATIS.7.1.015001.
- J. Tiffenberg et al., Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119, 131802 (2017), doi:10.1103/PhysRevLett.119.131802.
- G. F. Moroni et al., The skipper ccd for low-energy threshold particle experiments above ground (2021), arXiv:2107.00168.
- D. Rodrigues et al., Absolute measurement of the Fano factor using a Skipper-CCD, Nucl. Instr. Meth. Phys. Res. A 1010, 165511 (2021), doi:10.1016/j.nima.2021.165511.
- I. Giomataris et al., A novel large-volume spherical detector with proportional amplification read-out, J. Instrum. 3, P09007 (2008), doi:10.1088/1748-0221/3/09/P09007.
- I. Savvidis et al., Low energy recoil detection with a spherical proportional counter, Nucl. Instrum. Meth. A 877, 220 (2018), doi:10.1016/j.nima.2017.09.014.
- A. Meregaglia, A new neutrinoless double beta decay experiment: R2D2, 1312, 12002 (2019), doi:10.1088/1742-6596/1312/1/012002.
- L. Balogh et al., Copper electroplating for background suppression in the NEWS-G experi- ment, Nucl. Instrum. Meth. A 988, 164844 (2021), doi:10.1016/j.nima.2020.164844.
- F. Piquemal, Modane underground laboratory: Status and project, Eur. Phys. J. Plus 127, 110 (2012), doi:10.1140/epjp/i2012-12110-3.
- A. Giganon et al., A multiball read-out for the spherical proportional counter, J. Instrum. 12, P12031 (2017), doi:10.1088/1748-0221/12/12/P12031.
- I. Giomataris et al., A resistive ACHINOS multi-anode structure with DLC coating for spherical proportional counters, J. Instrum. 15, 11 (2020), doi:10.1088/1748- 0221/15/11/P11023.
- Y. Lv et al., Production and performance study of Diamond-Like Carbon resistive electrode in MPGD, Nucl. Instrum. Meth. A 958, 162759 (2020), doi:10.1016/J.NIMA.2019.162759.
- Q. Arnaud et al., Precision laser-based measurements of the single electron response of spher- ical proportional counters for the NEWS-G light dark matter search experiment, Phys. Rev. D 99, 102003 (2019), doi:10.1103/PhysRevD.99.102003.
- M. Morhac, TSpectrum Class Reference, https://root.cern.ch/doc/master/classTSpectrum.html.
- M. Morhac et al., Identification of peaks in multidimensional coincidence gamma-ray spec- tra, Nucl. Instrum. Meth. A 443, 108 (2000), doi:10.1016/S0168-9002(99)01005-0.
- D. Combecher, Measurement of W Values of Low-Energy Electrons in Several Gases, Radiat. Res. 84, 189 (1980), doi:10.2307/3575293.
- E. Waibel and B. Grosswendt, Spatial energy dissipation profiles, w values, backscatter coefficients, and ranges for low-energy electrons in methane, Nucl. Instrum. Methods Phys. Res. 211, 487 (1983), doi:10.1016/0167-5087(83)90278-8.
- I. Krajcar Bronic et al., The mean energy required to form an ion pair for low-energy photons and electrons in polyatomic gases, Radiat. Res. 115, 213 (1988), doi:10.2307/3577159.
- EXCESS2022 workshop, Indico page of the excess2022 workshop (2022), https://indico.scc.kit.edu/event/2575/.