Abstract
Quantum mechanics emerged as the result of a successful resolution of stringent empirical and profound conceptual conflicts within the development of atomic physics at the beginning of the last century. At first glance, it seems to be bizarre and even ridiculous to apply ideas of quantum physics in order to improve current psychological and linguistic or semantic ideas. However, a closer look shows that there are some parallels in the development of quantum physics and advanced theories of cognitive science dealing with concepts, conceptual composition, vagueness, and prototypicality. In both cases of the historical development, the underlying basic ideas are of geometric nature. In psychology, geometric models of meaning have a long tradition. However, they suffer from many shortcomings which are illustrated by discussing several puzzles of bounded rationality. The main suggestion of the present approach is that geometric models of meaning can be improved by borrowing basic concepts from (von Neumann) quantum theory. In the first part of this article, we consider several puzzles of bounded rationality. These include the Allais-and Ellsberg paradox, the disjunction effect, the conjunction and disjunction fallacies, and question order effects. We argue that the present account of quantum cognition-taking quantum probabilities rather than classical probabilities-can give a more systematic description of these puzzles than the alternate and rather eclectic treatments in the traditional framework of bounded rationality. Unfortunately, the quantum probabilistic treatment does not always and does not automatically provide a deeper understanding and a true explanation of these puzzles. One reason is that quantum approaches introduce additional parameters which possibly can be fitted to empirical data but which do not necessarily explain them. Hence, the phenomenological research has to be augmented by responding to deeper foundational issues. In the second part of this article, we aim to illustrate how recent progress in the foundation of quantum theory can help to answer the foundational questions of quantum cognition. This includes the opportunity of interpreting the free parameters, which are pure stipulations in the quantum probabilistic framework. Making a careful distinction between foundational and phenomenological research programs, we explain the foundational issue from the perspective of Piron, Foulis, Randall, and others, and we apply it to the foundation of quantum cognition. In this connection, we show that quantum probabilities are of (virtual) conceptual necessity if grounded in an abstract algebraic framework of orthomodular lattices. This framework is motivated by assuming partial Boolean algebras (describing particular perspectives) that are combined into a uniform system while considering certain capacity restrictions. It is at this point that one important aspect of the whole idea of bounded rationality directly enters the theoretical scenery of quantum cognition: resource limitation. Another important aspect of the foundational issue is that it automatically leads to a distinction between probabilities that are defined by pure states and probabilities arising from the statistical mixture of such states. It is possible to relate this formal distinction to the deep conceptual distinction between risk and ignorance. A third outcome is the possibility to identify quantum aspects in dynamic macro-systems using the framework of symbolic dynamics, closely related to the operational perspective of Piron, Foulis, Randall, and others. This helps to understand the ideas of epistemic complementarity and entanglement, and to analyse quantum aspects in third generation neural networks.
References (150)
- Acacio de Barros, J., & Suppes, P. (2009). Quantum mechanics, interference, and the brain. Journal of Mathematical Psychology, 53(5), 306-313.
- Aerts, D. (1982). Example of a macroscopical classical situation that violates Bell inequalities. Lettere Al Nuovo Cimento, 34(4), 107-111.
- Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53, 314-348.
- Aerts, D., Czachor, M., & D'Hooghe, B. (2005). Do We Think and Communicate in Quantum Ways? On the Presence of Quantum Structures in Language. In N. Gontier, J. P. V. Bendegem, & D. Aerts (Eds.), Evolutionary Epistemology, Language and Culture. (Studies in Language, Companion series). Amsterdam: John Benjamins Publishing Company.
- Aerts, D., & Gabora, L. (2005). A state-context-property model of concepts and their combinations II: A Hilbert space representation. Kybernetes, 34(2), 176-205.
- Aerts, D., & Sassoli de Bianchi, M. (2014a). The unreasonable success of quantum probability I: Quantum measurements as uniform fluctuations. arXiv preprint arXiv:1401.2647.
- Aerts, D., & Sassoli de Bianchi, M. (2014b). The unreasonable success of quantum probability II: Quantum measurements as universal measurements. arXiv preprint arXiv:1401.2650.
- Allais, M. (1953). Le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'ecole Americaine. Econometrica: Journal of the Econometric Society, 21, 503- 546.
- Atmanspacher, H., & Römer, H. (2012). Order effects in sequential measurements of non-commuting psychological observables. Journal of Mathematical Psychology, 56, 274-280.
- Atmanspacher, H., Römer, H., & Walach, H. (2002). Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond. Foundations of Physics, 32(3), 379-406.
- Axler, S. (1996). Linear Algebra done right. New York, Inc.: Springer-Verlag.
- Ballentine, L. E. (1970). The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 42(4), 358-381.
- Baltag, A., & Smets, S. (2011). Quantum logic as a dynamic logic. Synthese, 179(2), 285-306.
- Barnum, H., Caves, C. M., Finkelstein, J., Fuchs, C. A., & Schack, R. (2000). Quantum probability from decision theory? Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(1997), 1175-1182.
- beim Graben, P. (2004). Incompatible Implementations of Physical Symbol Systems. Mind and Matter, 2(2), 29-51.
- beim Graben, P. (2014). Order effects in dynamic semantics. Topics in Cognitive Science, 6(1), 67-73.
- Graben, P., & Atmanspacher, H. (2006). Complementarity in classical dynamical systems. Foundations of Physics, 36(2), 291-306.
- beim Graben, P., & Atmanspacher, H. (2009). Extending the philosophical significance of the idea of complementarity. In H. Atmanspacher, & H. Primas (Eds.), Recasting Reality. Wolfgang Pauli's Philosophical Ideas and Contemporay Science (pp. 99-113). Berlin: Springer.
- beim Graben, P., Filk, T., & Atmanspacher, H. (2013). Epistemic entanglement due to non-generating partitions of classical dynamical systems. International Journal of Theoretical Physics, 52, 723-734.
- Graben, P., & Gehrt, S. (2012). Geometric representations for minimalist grammars. Journal of Logic, Language and Information, 21, 393-432.
- beim Graben, P., & Hutt, A. (2014). Attractor and saddle node dynamics in heterogeneous neural fields. EPJ Nonlinear Biomedical Physics, 2(1), 4.
- Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37(4), 823-843.
- Blutner, R. (2009). Concepts and Bounded Rationality: An Application of Niestegge's Approach to Conditional Quantum Probabilities. In L. Accardi, G. Adenier, C. Fuchs, G. Jaeger, A. Y. Khrennikov, J.-Å. Larsson, et al. (Eds.), Foundations of Probability and Physics-5 (Vol. 1101, pp. 302-310). New-York: American Institute of Physics Conference Proceedings.
- Blutner, R. (2012). Questions and Answers in an Orthoalgebraic Approach. Journal of Logic, Language and Information, 21(3), 237-277, doi:10.1007/s10849-012-9158-0.
- Blutner, R., Hendriks, P., & de Hoop, H. (2003). A new hypothesis on compositionality. In P. P. Slezak (Ed.), Proceedings of the Joint International Conference on Cognitive Science (pp. 53-57). Sydney: ICCS/ASCS.
- Blutner, R., Hendriks, P., De Hoop, H., & Schwartz, O. (2004). When Compositionality Fails to Predict Systematicity. In S. D. Levy, & R. Gayler (Eds.), Compositional Connectionism in Cognitive Science. Papers from the AAAI Fall Symposium (ISBN 1-57735-214-9 ed., pp. 6-11). Arlington: The AAAI Press.
- Blutner, R., & Hochnadel, E. (2010). Two Qubits for C.G. Jung's Theory of Personality. Cognitive Systems Research, 11(3), 243-259, doi:10.1016/j.cogsys.2009.12.002.
- Blutner, R., Pothos, E. M., & Bruza, P. (2013). A Quantum Probability Perspective on Borderline Vagueness. Topics in Cognitive Sciences, 5, 711-736.
- Born, M. (1955). The statistical interpretation of quantum mechanics. Science, 122.
- Bruza, P., Busemeyer, J. R., & Gabora, L. (2009). Introduction to the special issue on quantum cognition. Journal of Mathematical Psychology.
- Budescu, D., & Wallsten, T. (1995). Processing Linguistic Probabilities: General principles and Empirical Evidence. In J. R. Busemeyer, R. Hastie, & D. L. Medin (Eds.), Decision making from a cognitve perspective (Vol. Psychology of Learning and Motivation, Volume 32) (pp. 275- 318). San Diego, CA: Academic Press.
- Busemeyer, J. R., & Bruza, P. D. (2012). Quantum Cognition and Decision. Cambridge, UK Cambridge University Press.
- Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118(2), 193-218.
- Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432 -459.
- Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Quantum dynamics of human decision-making. Journal of Mathematical Psychology, 50(3), 220-241.
- Carbó, R. (Ed.). (1995). Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches. Dordrecht: Kluwer.
- Caves, C. M., Fuchs, C. A., & Schack, R. (2002a). Quantum probabilities as Bayesian probabilities. Physical review A, 65(2).
- Caves, C. M., Fuchs, C. A., & Schack, R. (2002b). Unknown quantum states: the quantum de Finetti representation. Journal of Mathematical Physics, 43, 4537 -4559.
- Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.
- Chomsky, N. (1995). The minimalist program. Cambridge MA: MIT Press.
- Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36(1), 1-22.
- Conte, E. (1983). Exploration of Biological Function by Quantum Mechanics. Paper presented at the Proceedings 10th International Congress on Cybernetics,
- Conte, E., Khrennikov, A. Y., Todarello, O., Robertis, R. D., Federici, A., & Zbilut, J. P. (2008). A Preliminary Experimental Verification on the Possibility of Bell Inequality Violation in Mental States. NeuroQuantology, 6(3), 214-221.
- Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction. Physica D, 75, 11-54.
- Crutchfield, J. P., & Feldman, D. P. (2003). Regularities unseen, randomness observed: Levels of entropy convergence. Chaos and Complexity Letters, 13, 25-54.
- Crutchfield, J. P., & Packard, N. H. (1983). Symbolic dynamics of noisy chaos. Physica D, 7, 201-223.
- de Hoop, H., Hendriks, P., & Blutner, R. (2007). On compositionality and bidirectional optimization. Journal of Cognitive Science, 8(2).
- Ellsberg, D. (1961). Risk, Ambiguity, and the Savage Axioms. Quarterly Journal of Economics, 75(4), 643-669.
- Engesser, K., Gabbay, D. M., & Lehmann, D. (Eds.). (2009). Handbook of Quantum Logic and Quantum Structures. Amsterdam: Elsevier.
- Exel, R. (2004). KMS states for generalized gauge actions on Cuntz-Krieger algebras (An application of the Ruelle-Perron-Frobenius theorem). Bulletin of the Brazilian Mathematical Society, 35, 1- 12.
- Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 28, 3-71.
- Foulis, D. J. (1999). A half century of quantum logic-what have we learned? In D. Aerts, & J. Pykacz (Eds.), Quantum Structures and the Nature of Reality : The Indigo Book of Einstein meets Magritte. Dordrecht: Kluwer.
- Foulis, D. J., Piron, C., & Randall, C. H. (1983). Realism, operationalism, and quantum mechanics. Foundations of Physics, 13, 813-841.
- Foulis, D. J., & Randall, C. H. (1972). Operational statistics I: Basic concepts. Journal of Mathematical Physics, 13, 1667-1675.
- Franco, R. (2007a). The conjunction fallacy and interference effects. Arxiv preprint arXiv:0708.3948.
- Franco, R. (2007b). Quantum mechanics and rational ignorance. Arxiv preprint physics/0702163.
- Franco, R. (2007c). Risk, ambiguity and quantum decision theory. Arxiv preprint arXiv:0711.0886, Gabora, L., & Aerts, D. (2002). Contextalizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence.
- Gigerenzer, G. (1997). Bounded rationality models of fast and frugal inference. Swiss Journal of Economics and Statistics, 133, 201-218.
- Gigerenzer, G., & Selten, R. (2001). Bounded Rationality: The Adaptive Toolbox. Cambridge, MA MIT Press.
- Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics, 6, 885-894.
- Grice, P. (1989). Studies in the way of words. Cambridge Mass.: Harvard University Press.
- Haag, R. (1992). Local Quantum Physics: Fields, Particles, Algebras. Berlin: Springer.
- Hájek, A. (2012). Interpretations of Probability. The Stanford Encyclopedia of Philosophy, available from http://plato.stanford.edu/archives/win2012/entries/probability-interpret/, Winter 2012 Edition. Halpern, J. Y. (2003). Reasoning about Uncertainty. Cambridge, MA: MIT Press.
- Hampton, J. (1987). Inheritance of attributes in natural concept conjunctions. Memory and Cognition, 15, 55-71.
- Hampton, J. (1988a). Disjunction of natural concepts. Memory and Cognition, 16(579-591).
- Hampton, J. (1988b). Overextension of Conjunctive Concepts: Evidence for a Unitary Model of Concept Typicality and Class Inclusion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 12-32.
- Hampton, J. (2007). Typicality, graded membership, and vagueness. Cognitive Science, 31, 355-384.
- Hao, B.-L. (1989). Elementary Symbolic Dynamics and Chaos in Dissipative Systems. Singapore: World Scientific.
- Heisenberg, W. (1944). Die physikalischen Prinzipien der Quantentheory. Leipzig: S. Hirzel.
- Hinzen, W. (2000). Minimalism. In R. Kempson, T. Fernando, & N. Asher (Eds.), Handbook of Philosophy of Science 14: Philosophy and Linguistics (pp. 93-142). Amsterdam: Elsevier.
- Holland, S. S. (1995). Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bull. Amer. Math. Soc., 32, 205-234. Also available as arXiv:math/9504224.
- Howard, D. (2004). Who invented the "Copenhagen Interpretation"? A study in mythology. Philosophy of Science, 71(5), 669-682.
- James, W. (1890). The Principles of Psychology. New York/London: Holt and Macmillan.
- Jammer, M. (1989). The Conceptual development of quantum mechanics American Inst. Phys.
- Jauch, J. M. (1968). Foundations of Quantum Mechanics. Reading, Massachusetts: Addison-Wesley.
- Jenca, G. (2001). Blocks of homogeneous effect algebras. Bulletin of the Australian Mathematical Society, 64(1), 81-98.
- Jiménez-Montaño, M. A., Ebeling, W., Pohl, T., & Rapp, P. E. (2002). Entropy and complexity of finite sequences as fluctuating quantities. BioSystems, 64, 23-32.
- Johnson, E. J., Haubl, G., & Keinan, A. (2007). Aspects of endowment: A query theory of value construction. Journal of Experimental Psychology: Learning, Memory and Cognition, 33(3), 461-473.
- Johnson, J. G., & Busemeyer, J. R. (2010). Decision making under risk and uncertainty. Wiley Interdisciplinary Reviews: Cognitive Science, 1(5), 736-749.
- Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263-291.
- Kamp, H., & Partee, B. (1997). Prototype theory and compositionality. Cognition, 64(2), 189-206.
- Khrennikov, A. Y. (2003a). Quantum-like formalism for cognitive measurements. BioSystems, 70(3), 211-233.
- Khrennikov, A. Y. (2003b). Reconstruction of quantum theory on the basis of the formula of total probability. Arxiv preprint quant-ph/0302194,
- Khrennikov, A. Y. (2006). Quantum-like brain: "Interference of minds". BioSystems, 84(3), 225-241.
- Khrennikov, A. Y. (2010). Ubiquitous quantum structure: From psychology to finance. Berlin, New York: Springer.
- Kitto, K. Why quantum theory? In P. Bruza, W. Lawless, C. van Rijsbergen, D. Sofge, B. Coecke, & S. Clark, Eds. Proceedings (Eds.), Second Quantum Interaction Symposium, Oxford, 2008 (pp. 11- 18)
- Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago: University of Chicago press.
- La Mura, P. (2009). Projective expected utility. Journal of Mathematical Psychology, 53(5), 408-414.
- Large, E. W. (2010). A dynamical systems approach to musical tonality. In R. Huys, & V. K. Jirsa (Eds.), Nonlinear Dynamics in Human Behavior (pp. 193-211). Berlin, New York: Springer.
- Lerdahl, F. (2001). Tonal Pitch Space. NewYork: Oxford University Press.
- Lewis, D. (1983). Philosophical Papers Volume I. Oxford: Oxford University Press.
- Lind, D., & Marcus, B. (1995). An Introduction to Symbolic Dynamics and Coding. Cambridge, UK: Cambridge University Press.
- Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492-527.
- Lüders, G. (1951). Über die Zustandsänderung durch den Meßprozeß. Annalen der Physik, 8, 322-328.
- Mackey, G. (1963). The Mathematical Foundations of Quantum Mechanics. New York: W.A. Benjamin.
- Matsumoto, K. (1997). On C*-algebras associated with subshifts. International Journal of Mathematics, 8, 357-374.
- Mazzola, G. (2002). The topos of music: geometric logic of concepts, theory, and performance. Basel: Birkhauser.
- Montague, R. (1970). Universal grammar. Theoria, 36, 373-398.
- Moore, C. (1990). Unpredictability and undecidability in dynamical systems. Physical Review Letters, 64, 2354-2357.
- Moore, D. W. (2002). Measuring New Types of Question-Order Effects: Additive and Subtractive. The Public Opinion Quarterly, 66(1), 80-91.
- Moore, R. C. (1988). Autoepistemic logic. In P. Smets (Ed.), Non-Standard Logics for Automated Reasoning (pp. 105-136). New York: Academic Press.
- Müller, J. (1970). Grundlagen der Systematischen Heuristik, Schriften zur Sozialistischen Wirtschaftsführung. Berlin: Dietz-Verlag.
- Murdoch, D. (1987). Niels Bohr's philosophy of physics: Cambridge University Press.
- Niestegge, G. (2008). An Approach to Quantum Mechanics via Conditional Probabilities. Foundations of Physics, 38, 241-256.
- Ott, E. (1993). Chaos in Dynamical Systems. New York: Cambridge University Press.
- Piron, C. (1972). Survey of General Quantum Physics. Foundations of Physics, 2(4), 287-314.
- Piron, C. (1976). Foundations of quantum physics. Reading, Mass.: WA Benjamin, Inc. Pitowsky, I. (1989). Quantum Probability -Quantum Logic. Berlin, New York: Springer.
- Popper, K. R. (1959). The Propensity Interpretation of Probability. British Journal of the Philosophy of Science, 10, 25-42.
- Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability explanation for violations of 'rational'decision theory. Proceedings of the Royal Society B: Biological Sciences, 276.
- Pothos, E. M., & Busemeyer, J. R. (2013). Quantum principles in psychology: The debate, the evidence, and the future. Behavioral and Brain Sciences, 36(3), 310-327.
- Primas, H. (1990). Mathematical and philosophical questions in the theory of open and macroscopic quantum systems. In A. I. Miller (Ed.), Sixty-two Years of Uncertainty: Historical, Philosophical and Physics Inquiries into the Foundation of Quantum Mechanics (pp. 233-257): Plenum Press.
- Primas, H. (2007). Non-Boolean Descriptions for Mind-Matter Problems. Mind & Matter, 5(1), 7-44.
- Rabinovich, M. I., Huerta, R., & Laurent, G. (2008). Transient dynamics for neural processing. Science, 321(48 -50).
- Randall, C. H., & Foulis, D. J. (1973). Operational statistics II: Manuals of operations and their logics. Journal of Mathematical Physics, 14, 1472-1480.
- Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59 -108.
- Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347 -356.
- Reed, A. V. (1973). Speed-accuracy trade-off in recognition memory. Science, 181, 574 -576.
- Richman, F., & Bridges, D. S. (1999). A constructive proof of Gleason's theorem. Journal of Functional Analysis 162, 287 (1999), http://dx.doi.org/10.1006/jfan.1998.3372., 162(287).
- Rubinstein, A. (1998). Modeling Bounded Rationality. Cambridge, MA: MIT Press.
- Russell, S., & Norvig, P. (1995). Artificial Intelligence -A Modern Approach. New Jersey: Prentice Hall. Savage, L. J. (1954). The Foundations of Statistics. New York, NY: Wiley.
- Schuman, H., & Presser, S. (1981). Questions and answers in attitude surveys: Experiments in question form, wording, and context. New York: Academic Press.
- Searle, J. R. (1980). Minds, Brains, and Programs. Behavioral and Brain Sciences, 3, 417-457.
- Searle, J. R. (1998). Mind, language and society: Philosophy in the real world. Cambridge, Mass.: Cambridge Univ Press.
- Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99-118.
- Smets, S. (2011). Logic and Quantum Physics. Journal of the Indian Council of Philosophical Research.
- Solér, M. P. (1995). Characterization of Hilbert spaces by orthomodular spaces. Communications in Algebra, 23(1), 219-243.
- Spenader, J., & Blutner, R. (2007). Compositionality and Systematicity. In G. Bouma, I. Krämer, & J. Zwarts (Eds.), Cognitive Foundations of Interpretation. Amsterdam: Verhandelingen, Afd. Letterkunde, Nieuwe Reeks.
- Stapp, H. P. (1972). The Copenhagen interpretation. AJP, 1098-1116.
- Sternefeld, W. (2012). Wo stehen wir in der Grammatiktheorie? Bemerkungen anlässlich eines Buchs von Stefan Müller. Available from http://www.s395910558.online.de/Downloads/Rezension- 15-lang.pdf. Seminar für Sprachwissenschaft. Tübingen.
- Stokhof, M., & van Lambalgen, M. (2011). Abstractions and idealisations: The construction of modern linguistics. Theoretical Linguistics, 37(1-2), 1-26.
- Streater, R. F., & Wightman, A. S. (1964). PCT, Spin & Statistics, and all that. New York: Benjamin.
- Sudman, S., & Bradburn, N. M. (1982). Asking questions. San Francisco: Jossey-Bass Inc Pub.
- Suppes, P., Krantz, D. H., Luce, R. D., & Tversky, A. (1989). Foundations of measurement: Geometrical, threshold, and probabilistic representations. London: Academic Press.
- Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.
- Tversky, A., & Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review, 102(2), 269-283.
- Tversky, A., & Kahneman, D. (1983). Extension versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293-315.
- Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5(4), 297-323.
- Tversky, A., & Shafir, E. (1992). The disjunction effect in choice under uncertainty. Psychological Science, 3(5), 305-309.
- Tymoczko, D. (2011). A Geometry of Music: Oxford University Press.
- Vedral, V. (2006). Introduction to Quantum Information Science. New York: Oxford University Press.
- von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Transl. by R. Beyer (Princeton: Princeton University Press, 1955). Heidelberg: Springer.
- Von Neumann, J., & Morgenstern, O. (1944). The theory of games and economic behavior. Princeton, NJ: Princeton University Press.
- Wang, Z., & Busemeyer, J. R. (2013). A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Science, 5(4), 689-710.
- Weber, E. U., & Johnson, E. J. (2006). Constructing preferences from memories. In S. Lichtenstein, & P. Slovic (Eds.), The Construction of preference (pp. 397-410). New York, NY: Cambridge University Press.
- Weber, E. U., & Johnson, E. J. (2009). Mindful judgement and decision making. Annual Review of Psychology, 60, 53-85.
- Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 67 -85.
- Wilce, A. (2009). Test spaces. In K. Engesser, D. M. Gabbay, & D. Lehmann (Eds.), Handbook of Quantum Logic and Quantum Structures (pp. 443-549). Amsterdam: Elsevier.
- Wilce, A. (2012). Quantum Logic and Probability Theory. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Stanford: CSLI, available from http://plato.stanford.edu/archives/fall2012/entries/qt-quantlog/.
- Yukalov, V. I., & Sornette, D. (2010). Decision theory with prospect interference and entanglement. Theory and Decision, 70, 283-328.
- Yukalov, V. I., & Sornette, D. (2013). Quantum probabilities of composite events in quantum measurements with multimode states. Laser Physics, 23(10), doi:doi:10.1088/1054- 660X/23/10/105502.