Academia.eduAcademia.edu

Outline

MATERIAL PROCESSING: FOCUS ON LASER CUTTING

2020, BEST: International Journal of Management Information Technology and Engineering (BEST: IJMITE)

Abstract

Light Amplification by Stimulated Emission of Radiation (laser) is among the fastest growing technologies in the engineering world and has a vast range of applications. It involves focusing photons of lights on a single spot of a workpiece with considerable accuracy, so as to transfer energy into the workpiece in a measure that is adequate to melt or achieve a particular material process. The technology is extremely broad, hence this review will focus on using laser for cutting applications which is one of the most popular, recently developed and emerging laser material processing techniques. This review utilizes relevant and recent literature to discuss material cutting by laser, the attributes of laser cutting, laser cutting parameters optimization as well as the trends in development of the process.

Key takeaways
sparkles

AI

  1. Laser cutting represents 80% of industrial laser applications, highlighting its prominence in manufacturing.
  2. Optimization models for laser cutting processes remain underexplored, necessitating further research and development.
  3. High-power fiber and disk lasers are emerging as more efficient alternatives to traditional CO2 lasers.
  4. Effective laser cutting involves balancing power, speed, and gas pressure for optimal quality and efficiency.
  5. The text reviews laser cutting technology's advancements and emphasizes the need for improved optimization methodologies.

References (52)

  1. Al-Mashikhi, S. O., Powell, J., Kaplan, A. F. H., & Voisey, K. T. (2011). Heat affected zones and oxidation marks in Impact Factor (JCC): 4.7398 www.bestjournals.in fiber laser-oxygen cutting of mild steel. Journal of Laser Applications, 23(4).
  2. Amal, N., Eman, N., & Mona, A. Y. (2016). Effect of laser cutting parameters on surface roughness of stainless steel 307. Leonardo Electronic Journal of Practices and Technologies, 15(29), 127-136.
  3. Belforte, D. (2015). 2015 Industrial Laser Market Outperforms Global Manufacturing Instability. .Journal of Industrial Laser Solutions 31.
  4. Boyu Sun, Qiao, H., Jibin Zhao, Ying Lu, & Guo, Y. (2018). Current status of water-jet guided laser cutting technology. Opto-Electronic Engineering, 44(11), 1039-1044.
  5. Brian Pfluger, & Jacques Coderre. (2016). When Precision Matters, Deliver it with Advanced Laser-EDM Combo. Radical Departures, Advanced Techniques in Aerospace Manufacturing, 13, 22-26.
  6. Chagnot, C., de Dinechin, G., & Canneau, G. (2010). Cutting performances with new industrial continuous wave ND:YAG high power lasers: For dismantling of former nuclear workshops, the performances of recently introduced high power continuous wave ND:YAG lasers are assessed. Nuclear Engineering and Design, 240(10), 2604-2613. doi: https://doi.org/10.1016/j.nucengdes.2010.06.041
  7. Chiang, K.-T., & Chang, F.-P. (2006). Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. Journal of Materials Processing Technology, 180(1), 96-101. doi: https://doi.org/10.1016/j.jmatprotec.2006.05.008
  8. Dobrzański, L. A., & Drygała, A. (2007). Laser processing of multicrystalline silicon for texturization of solar cells. Journal of Materials Processing Technology, 191(1), 228-231. doi: https://doi.org/10.1016/j.jmatprotec.2007.03.009
  9. Dubey, A. K., & Yadava, V. (2008). Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Optics and Lasers in Engineering, 46(2), 124-132. doi: https://doi.org/10.1016/j.optlaseng.2007.08.011
  10. Dutta Majumdar, J., & Manna, I. (2003). Laser processing of materials. Sadhana 28(3-4), 495-562.
  11. Eltawahni, H. A., Hagino, M., Benyounis, K. Y., Inoue, T., & Olabi, A. G. (2012). Effect of CO2 laser cutting process parameters on edge quality and operating cost of AISI316L. Optics & Laser Technology, 44(4), 1068-1082. doi: https://doi.org/10.1016/j.optlastec.2011.10.008
  12. NAAS Rating: 2.97 Index Copernicus Value (ICV): 58
  13. Gadallah, M. H., & Abdu, H. M. (2015). Modeling and optimization of laser cutting operations. Manufacturing Rev., 2.
  14. Ghany, K. A., & Newishy, M. (2005). Cutting of 1.2mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. Journal of Materials Processing Technology, 168(3), 438-447. doi: https://doi.org/10.1016/j.jmatprotec.2005.02.251
  15. Ghany, K. A., Rafea, H. A., & Newishy, M. (2006). Using a Nd:YAG laser and six axes robot to cut zinc-coated steel. The International Journal of Advanced Manufacturing Technology, 28(11), 1111-1117. doi: 10.1007/s00170-004-2468-x
  16. Guo, D., Chen, J., & Cheng, Y. (2006, 0-0 0). Laser Cutting Parameters Optimization Based on Artificial Neural Network. Paper presented at the The 2006 IEEE International Joint Conference on Neural Network Proceedings.
  17. Happonen, A., Stepanov, A., & Piili, H. (2015). Feasible Application Area Study for Linear Laser Cutting in Paper Making Processes. Physics Procedia, 78, 174-181. doi: https://doi.org/10.1016/j.phpro.2015.11.030
  18. Heberle, J., Häfner, T., & Schmidt, M. (2018). Efficient and damage-free ultrashort pulsed laser cutting of polymer intraocular lens implants. CIRP Annals. doi: https://doi.org/10.1016/j.cirp.2018.04.095
  19. Illyefalvi-Vitéz, Z. (2001). Laser processing for microelectronics packaging applications. Microelectronics Reliability, 41(4), 563-570. doi: https://doi.org/10.1016/S0026-2714(00)00250-X
  20. Jarosz, K., Löschner, P., & Niesłony, P. (2016). Effect of Cutting Speed on Surface Quality and Heat-affected Zone in Laser Cutting of 316L Stainless Steel. Procedia Engineering, 149, 155-162. doi: https://doi.org/10.1016/j.proeng.2016.06.650
  21. Koji Tamura, Ryoya Ishigami, & Ryuichiro Yamagishi. (2016). Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser. Journal of Nuclear Science and Technology. doi: DOI: 10.1080/00223131.2015.1080633
  22. Kotadiya, D. J., Kapopara, J. M., Patel, A. R., Dalwadi, C. G., & Pandya, D. H. (2018). Parametric analysis of process parameter for Laser cutting process on SS-304. Materials Today: Proceedings, 5(2, Part 1), 5384-5390. doi: https://doi.org/10.1016/j.matpr.2017.12.124
  23. Lamikiz, A., Lacalle, L. N. L. d., Sánchez, J. A., Pozo, D. d., Etayo, J. M., & López, J. M. (2005). CO2 laser cutting Impact Factor (JCC): 4.7398 www.bestjournals.in of advanced high strength steels (AHSS). Applied Surface Science, 242(3), 362-368. doi: https://doi.org/10.1016/j.apsusc.2004.08.039
  24. Leone, C., & Genna, S. (2018). Heat affected zone extension in pulsed Nd:YAG laser cutting of CFRP. Composites Part B: Engineering, 140, 174-182. doi: https://doi.org/10.1016/j.compositesb.2017.12.028
  25. Li, C. F., Johnson, D. B., & Kovacevic, R. (2003). Modeling of waterjet guided laser grooving of silicon. International Journal of Machine Tools and Manufacture, 43(9), 925-936. doi: https://doi.org/10.1016/S0890-6955(03)00063-4
  26. Li, L. (2018). 2 -The Challenges Ahead for Laser Macro, Micro and Nano Manufacturing☆ A2 -Lawrence, Jonathan Advances in Laser Materials Processing (Second Edition) (pp. 23-42): Woodhead Publishing.
  27. Liu, Q., Duan, X., & Peng, C. (2014). Novel Optical Technologies for Nanofabrication (J. Tang Ed.). Heidelberg New York Dordrecht London: Springer.
  28. Lokesh, S., Niresh, J., Neelakrishnan, S., & Rahul, S. P. D. (2018). Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method. IOP Conference Series: Materials Science and Engineering, 324(1), 012054.
  29. Madhukar, Y. K., Mullick, S., & Nath, A. K. (2016). An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets. Optics and Lasers in Engineering, 77, 203-218. doi: https://doi.org/10.1016/j.optlaseng.2015.08.003
  30. MADIC, M. J., & RADOVANOVIC, M. R. (2012). Analysis of the Heat Affected Zone in CO2 Laser Cutting ff Stainless Steel. Thermal Science, 16(Suppl 2), S419-S429
  31. Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature, 187, 493-494.
  32. Miloš, M., & Miroslav1b, R. (2013). Application of the Taguchi Method for Optimization of Laser Cutting: A Review. Nonconventional Technologies Review, 50-57.
  33. Paulo Davim, J. (2013). Lasers in Manufacturing (J. P. Davim Ed.). Great Britain: ISTE Ltd and John Wiley & Sons, Inc.
  34. Perrottet, D., Boillat, C., Amorosi, S., & Richerzhagen, B. (2005). PV processing: Improved PV-cell scribing using water jet guided laser. Refocus, 6(3), 36-37. doi: https://doi.org/10.1016/S1471-0846(05)70398-X NAAS Rating: 2.97 Index Copernicus Value (ICV): 58
  35. Radonjić, S., Kovač, P., & Mitrović, A. (2012). Defining New Processing Parameters in Laser Cutting. Paper presented at the 16 th International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology", Dubai, UAE.
  36. Rajaram, N., Sheikh-Ahmad, J., & Cheraghi, S. H. (2003). CO2 laser cut quality of 4130 steel. International Journal of Machine Tools and Manufacture, 43(4), 351-358. doi: https://doi.org/10.1016/S0890-6955(02)00270-5
  37. Salem, H. G., Mansour, M. S., Badr, Y., & Abbas, W. A. (2008). CW Nd:YAG laser cutting of ultra low carbon steel thin sheets using O2 assist gas. Journal of Materials Processing Technology, 196(1), 64-72. doi: https://doi.org/10.1016/j.jmatprotec.2007.05.013
  38. Schopphoven, T., Gasser, A., & Backes, G. (2017). EHLA: Extreme High-Speed Laser Material Deposition. Laser Technik Journal, 14(4), 26-29. doi: 10.1002/latj.201700020
  39. Sealy, M. P., Guo, Y. B., Liu, J. F., & Li, C. (2016). Pulsed Laser Cutting of Magnesium-Calcium for Biodegradable Stents. Procedia CIRP, 42, 67-72. doi: https://doi.org/10.1016/j.procir.2016.02.190
  40. Steen, W. M. (2003). Laser material processing-an overview. Journal of Optics A: Pure and Applied Optics, 5(4), S3.
  41. Steen, W. M., & Kamalu, J. N. (1983). CHAPTER 2 -Laser Cutting. In M. Bass (Ed.), Materials Processing: Theory and Practices (Vol. 3, pp. 15-111): Elsevier.
  42. Steen, W. M., & Mazumder, J. (2010). Laser Material Processing (4th Ed.). London Dordrecht Heidelberg New York: Springer
  43. Stournaras, A., Stavropoulos, P., Salonitis, K., & Chryssolouris, G. (2009). An investigation of quality in CO2 laser cutting of aluminum. CIRP Journal of Manufacturing Science and Technology, 2(1), 61-69. doi: https://doi.org/10.1016/j.cirpj.2009.08.005
  44. Syn, C. Z., Mokhtar, M., Feng, C. J., & Manurung, Y. H. P. (2011). Approach to prediction of laser cutting quality by employing fuzzy expert system. Expert Systems with Applications, 38(6), 7558-7568. doi: https://doi.org/10.1016/j.eswa.2010.12.111
  45. Tabie, V. M., Koranteng, M. O., Yunus, A., & Kuuyine, F. (2019). Water-Jet Guided Laser Cutting Technology-an Overview. Lasers in Manufacturing and Materials Processing, 6(2), 189-203. doi: 10.1007/s40516-019-00089-9 Material Processing: Focus on Laser Cutting 19 Impact Factor (JCC): 4.7398 www.bestjournals.in
  46. Tamura, K., & Yamagishi, R. (2016). Laser cutting conditions for steel plates having a thickness of more than 100 mm using a 30 kW fiber laser for nuclear decommissioning. Mechanical Engineering Journal, 3(3), 15-00590-00515-00590. doi: 10.1299/mej.15-00590
  47. Tamura, K., & Yamagishi, R. (2017). Observation of the molten metal behaviors during the laser cutting of thick steel specimens using attenuated process images. Journal of Nuclear Science and Technology. doi: 10.1080/00223131.2017.1299643
  48. Wandera, C., & Niyibizi, A. (2018). Potential Benefits of adoption of Laser Materials Processing in East Africa's Manufacturing Industry. Paper presented at the 3rd DeKUT International Conference on STI&E NYERI, KENYA.
  49. Yilbaş, B. S., & Sahin, A. Z. (1995). Oxygen assisted laser cutting mechanism-a laminar boundary layer approach including the combustion process. Optics & Laser Technology, 27(3), 175-184. doi: https://doi.org/10.1016/0030-3992(95)93638-8
  50. Yilbas, B. S., Shaukat, M. M., & Ashraf, F. (2017). Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process. Optics & Laser Technology, 93, 67-73. doi: https://doi.org/10.1016/j.optlastec.2017.02.014
  51. Yue, T. M., & Lau, W. S. (1996). Pulsed Nd:YAG Laser Cutting of Al/Li/SiC Metal Matrix Composites. Materials and Manufacturing Processes, 11(1), 17-29. doi: 10.1080/10426919608947458
  52. Zhang, J. Z., Chen, J. C., & Kirby, E. D. (2007). Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of Materials Processing Technology, 184(1), 233-239. doi: https://doi.org/10.1016/j.jmatprotec.2006.11.029