Academia.eduAcademia.edu

Outline

Robust Discrete Optimization and Downside Risk Measures

Abstract

We propose methods for robust discrete optimization in which the objective function has cost components that are subject to independent and bounded perturbations. Motivated by risk man- agement practice, we approximate the problem of optimization of VaR, a widely used downside risk measure by introducing four approximating models that origininate in robust optimization. We show that all four models allow the ∞exibility of adjusting the level of conservativism such that the probability of the actual cost being less than a specifled level, in the worst case distribution, is at least 1 ¡ fi. Under a robust model with ellipsoidal uncertainty set, we propose a Frank-Wolfe type algorithm that we show converges to a locally optimal solution, and in computational experiments is remarkably efiective. We propose a robust model that is at most 1 + " more conservative than the ellipsoidal uncertainty set model and show that we can reduce the robust model to solving a polynomial number of n...

References (23)

  1. Averbakh, I. (2001): On the complexity of a class of combinatorial optimization problems with uncertainty, Math. Prog. 90, 263-272.
  2. Ben-Tal, A., A. Nemirovski (1998): Robust convex optimization, Math. Oper. Res. 23, 769-805.
  3. Ben-Tal, A., A. Nemirovski (1999): Robust solutions to uncertain programs, Oper. Res. Lett. 25, 1-13.
  4. Ben-Tal, A., A. Nemirovski (2000): Robust solutions of linear programming problems contaminated with uncertain data, Math. Prog. 88, 411-424.
  5. Ben-Tal, A., L. El-Ghaoui, A. Nemirovski (2000): Robust semidefinite programming, in Saigal, R., Vandenberghe, L., Wolkowicz, H., eds., Semidefinite programming and applications, Kluwer Academic Publishers, Norwell, Ma.
  6. Bertsimas, D., Pachamanova, D., Sim, M. (2003): Robust Linear Optimization under General Norms, Oper. Res. Let. 32, 510-516, 2004.
  7. Bertsimas, D., M. Sim (2003): Robust Discrete Optimization and Network Flows, Math. Prog. 98, 49-71.
  8. Bertsimas, D., M. Sim (2004): The Price of Robustness, Oper. Res. 52, 1, 35-53.
  9. Bertsimas, D., M. Sim (2004): Robust Conic Optimization, Working Paper, MIT.
  10. Dijkstra, E. W. (1959): A note on two problems in connection with graphs. Numerische Mathe- matik, 269-271.
  11. El-Ghaoui, H. Lebret (1997): Robust solutions to least-square problems to uncertain data matrices, SIAM J. Matrix Anal. Appl. 18, 1035-1064.
  12. El-Ghaoui, L., Oustry, F. and H. Lebret (1998): Robust solutions to uncertain semidefinite pro- grams, SIAM J. Optim. 9, 33-52.
  13. Eppstein, D. (1995): Geometric lower bounds for parametric matroid optimization, Proc. 27th ACM Symposium on the Theory of Computing, 662-671.
  14. Fern andez-Baca, D., G. Slutzki, and D. Eppstein. (1996): Using sparsification for parametric minimum spanning tree problems, Proc. 5th Scand. Workshop in Algorithm Theory. Springer- Verlag, Lecture Notes in Computer Science, 1097-1100.
  15. Gusfield, D. (1980): Sensitivity Analysis for combinatorial optimization, Technical Report UCB/ERL M80/22, University of Califonia, Berkeley.
  16. Ishii, H., S. Shiode, T. Nishida, Y. Namasuya. (1981): Stochastic Spanning Tree Problem, Discrete Appl. Math. 3, 263-271.
  17. Jorion, P. (1997): Value at Risk, McGraw-Hill, New York, NY.
  18. Hassin, R., A. Tamir (1989) Maximizing classes of two-parameter objectives over matriods, Math. Oper. Res. 14, 362-375.
  19. Karp, R. M., J. B. Orlin (1981): Parametric shortest path algorithms with an applications to cyclic stuffing, Discrete Appl. Math. 3, 37-45.
  20. Kouvelis, P., G. Yu (1997): Robust discrete optimization and its applications, Kluwer Academic Publishers, Norwell, MA.
  21. Levy, H. (1992): Stochastic Dominance and Expected Utility: Survey and Analysis, Management Science 38, 555-593.
  22. Levy, H. Kroll, Y. (1978): Ordering Uncertain Options with Borrowing and Lending, The Journal of Finance, 31.
  23. R. Schultz, L. Stougie and M. van der Vlerk (1998): Solving stochastic programs with complete integer recourse by enumeration: A framework using Grobner basis reductions, Math. Prog. 83, 1998, 229-252.