Academia.eduAcademia.edu

Outline

An extended calculus of constructions

1990

Abstract

This thesis presents and studies a unifying theory of dependent types ECC-Extended Calculus of Constructions. ECC integrates Coquand-Huet's (impredicative) calculus of constructions and Martin-Löf's (predicative) type theory with universes, and turns out to be a strong and expressive calculus for formalization of mathematics, structured proof development and program specification.

References (130)

  1. and Coquand [Coq86a] do not lead to such a simple notion of principal type. 0 Bibliography
  2. H.P Barendregt, The Lambda Calculus: its Syntax and Semantics, revised edition, North-Holland.
  3. H.P Barendregt, Typed Lambda Calculi, to appear in Handbook of Logic in Computer Science (eds., S. Abramsky, D. Gabbay and T.S.E. Maibaum), Oxford University Press.
  4. H.P Barendregt, 'Introduction to Generalized Type Systems', to ap- pear in Proc. of the 3rd Italian Conf. on Theoretical Computer Sci- ence, Mandera.
  5. C. Böhm and A. Beradurcci, 'Automatic Synthesis of Typed A- programs on Term Algebras', Theoretical Computer Science 39.
  6. M.J. Beeson, Foundations of Constructive Mathematics, Springer- Verlag.
  7. S. Berardi, Type Dependence and Constructive Mathematics, manuscript, June 1989.
  8. S. Berardi, Non-conservativity of Coquand's Calculus with respect to Higher-order Intuitionistic Logic, Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi, Edinburgh.
  9. E. Barendsen and H. Geuvers, 'Conservativity of )¼P over PRED manuscript.
  10. R. Burstall and J. Goguen, 'The Semantics of CLEAR, a Specification Language', Lecture Notes in Computer Science 86.
  11. E. Bishop, Foundations of Constructive Analysis, McGraw-Hill.
  12. R. Burstall and B. Lampson, 'Pebble, a Kernel Language for Modules and Abstract Data Types', Lecture Notes in Computer Science 173.
  13. R. Burstall and Zhaohui Luo, 'A Set-theoretic Setting for Structuring Theories in Proof Development', Circulated notes. Apr. 1988.
  14. R. Burstall, D. MacQueen and D. Sannella, 'HOPE: an Experimental Applicative Language', Proc. 1980 LISP Conf., California.
  15. R. Burstall, 'Programming with Modules as Typed Functional Pro- gramming', Proc. Inter. Conf. on Fifth Generation Computer Systems, Tokyo.
  16. R. Burstall, Research in Interactive Theorem Proving at Edin- burgh University, Proc. of 20th IBM Computer Science Symposium, Shizuoka, Japan. Also, LFCS Report ECS-LFCS-86-12, Dept. of Com- puter Science, Univ. of Edinburgh.
  17. R. Burstall, An Approach to Program Specification and Development in Constructions, Talk given in Workshop on Programming Logic, Bastad, Sweden, May 1989.
  18. R. Burstall, 'Computer-assisted Proof for Mathematics: an introduc- tion, using the LEGO proof system', to appear in Proc. of the Institute for Applied Math. conf., Brighton Polytechnic.
  19. L. Cardelli, 'A Polymorphic )-calculus with Type:Type', manuscript.
  20. L. Cardelli, Typeful Programming, Lecture notes for the IFIP State of the Art Seminar on Formal Description of Programming Concepts, Rio de Janeiro, Brazil.
  21. J. Cartmell, Generalized Algebraic Theories and Contextual Category, Ph.D. Thesis, University of Oxford.
  22. J. Cartmell, 'Generalized Algebraic Theories and Contextual Cate- gory', Annals of Pure and Applied Logic 32.
  23. H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North Holland Publishing Company.
  24. Th. Coquand, C. Gunter and C. Winskel, Domain Theoretic Mod- els of Polymorphism, Tech. Report No. 116, Computer Laboratory, University of Cambridge.
  25. Th. Coquand and C. Huet, 'Constructions:a Higher Order Proof Sys- tern for Mechanizing Mathematics', EUROCAL'85, Lecture Notes in Computer Science 203.
  26. Th. Coquand and G. Huet, 'The Calculus of Constructions', Informa- tion and Computation 76(2/3).
  27. A. Church, 'A Formulation of the Simple Theory of Types', J. Sym- bolic Logic 5(1).
  28. R. L. Constable, 'Constructive Mathematics and Automatic Programs Writers', Proc. IFIP'71.
  29. R. L. Constable et al., Implementing Mathematics with the NuPRL Proof Development System, Pretice-Hall.
  30. Th. Coquand, 'Une Theorie des Constructions PhD thesis, Univer- sity of Paris VII.
  31. Th. Coquand, 'An Analysis of Girard's Paradox', Proc. 1st Ann. Symp. on Logic in Computer Science.
  32. Th. Coquand, 'A Calculus of Constructions' manuscript, Nov. 1986.
  33. Th. Coquand, 'Metamathematical Investigations of a Calculus of Con- structions', manuscript.
  34. Th. Coquand and Ch. Paulin-Mohring, 'Inductively Defined Types', draft.
  35. L. Cardelli and P. Wegner, 'On Understanding Types, Data Abstrac- tion and Polymorphism', Computing Surveys 17.
  36. N. G. de Bruijn, 'Lambda Calculus Notation with Nameless Dummies: a Tool for Automatic Formula Manipulation with Application to the Church-Rosser Theorem', Indag. Mathematics 34.
  37. N. C. de Bruijn, 'A Name-free Lambda Calculus with Facilities for Internal Definition of Expressions and Segments', Technical Report 78-WSK-03, Eindhoven University of Technology.
  38. N. G. de Bruijn, 'A Survey of the Project AUTOMATH', In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal- ism, (eds., J. Hindley and J. Seldin), Academic Press.
  39. K. Devlin, Fundamentals of Contemporary Set Theory, Springer- Verlag.
  40. H. Ehrig, W. Fey and H. Hansen, ACT ONE: an Algebraic Specifi- cation Language with Two Levels of Semantics, Tech. Report 83-03, Technical University of Berlin, Fachbereich Informatik.
  41. T. Ehrhard, 'A Categorical Semantics of Constructions Proc. 3rd
  42. Ann. Symp. on Logic in Computer Science, Edinburgh.
  43. S. Feferman, 'Constructive Theories of Functions and Classes', in Logic Colloquium'78, (eds., M. Boffa, D. van Dalen and K. McAloon) North Holland, Amsterdam.
  44. K. Futatsugi, J. Goguen, J.-P. Jouannaud and J. Meseguer, Principles of OBJ2, Proc. POPL 85.
  45. H. Friedman, 'Set-theoretic Foundations for Constructive Analysis Annals of Mathematics 105.
  46. J.H. Gallier, On Girard's 'Candidats de Reductibilite", To appear in Logic and Computer Science (ed. P. Odifreddi), Academic Press.
  47. H. Geuvers, A Modular Proof of Strong Normalization for the Calculus of Constructions, Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi, Edinburgh, Sept. 1989.
  48. J.-Y. Girard, 'Une extension de l'interpretation fonctionelle de Gödel a l'analyse et son application a l'élimination des coupures dans et la thèorie des types', Proc. 2nd Scandinavian Logic Symposium.
  49. J.-Y. Girard, Interpretation fonctionelle et elimination des coupures de l'arithmétique d'ordre supérieur, These, Université Paris VII.
  50. J.-Y. Girard, 'Quelques re'sultats sur les interpretations fonctionells', Lecture Notes in Mathematics 337, Springer.
  51. J.-Y. Girard, 'The System F of Variable Types, Fifteen Years Later Theoretical Computer Science 45.
  52. J.-Y. Girard, Proofs and Types, Translated by Y. Lafont and P. Taylor, Cambridge University Press.
  53. M.J. Gordon, R. Milner and C.P. Wadsworth, Edinburgh LCF, Lecture Notes in Computer Science 78, Springer.
  54. T. Griffin, An Environment for Formal Systems, LFCS Report ECS- LFCS-87-34, Dept. of Computer Science, Univ. of Edinburgh.
  55. A. Grzegorczyk, 'Some Classes of Resursive Functions', Rozprawy Mate. IV, Warsaw.
  56. S. Hayashi, 'Constructive Mathematics and Computer-assisted Rea- soning Systems', to appear in Proc. of Heyting'88, Prenum Press.
  57. A. Heyting, Intuitionism: an Introduction, North-Holland.
  58. J. Hook and D. Howe, Impredicative Strong Existential Equivalent to Type:Type, Technical Report TR86-760, Cornell University.
  59. R. Harper, F. Honsell and C. Plotkin, 'A Framework for Defining Logics', Proc. 2nd Ann. Symp. on Logic in Computer Science.
  60. R. Harper, D. MacQueen and R. Milner, Standard ML, LFCS Report ECS-LFCS-86-2, Dept. of Computer Science, Univ. of Edinburgh.
  61. S. Hayashi and H. Nakano, PX: a Computational Logic, The MIT Press, Cambridge, Massachusetts.
  62. W. A. Howard, 'The Formulae-as-types Notion of Construction', In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (eds., J. Hindley and J. Seldin), Academic Press, 1980.
  63. M. Hyland and A. Pitts, 'The Theory of Constructions: Categori- cal Semantics and Topos-theoretic Models', Categories in Computer Science and Logic, Boulder.
  64. R. Harper and R. Pollack, 'Type Checking, Universe Polymorphism, and Typical Ambiguity in the Calculus of Constructions', To appear in Theoretical Computer Science.
  65. J.R. Hindley and J.P. Seldin, Introduction to Combinators and \- calculus, Cambridge University Press.
  66. C. Huet, 'A Calculus with Type:Type unpublished manuscript.
  67. G. Huet (ed.), The Calculus of Constructions: Documentation and User's Guide, Technical Report INRIA 110.
  68. M. Hyland, 'The Effective Topos', in The Brouwer Symposium, (eds., A.S.Troelstra and Van Dalen) North-Holland.
  69. M. Hyland, 'A Small Complete Category', To appear in Ann. Pure Appl. Logic.
  70. B. Jutting, Checking Landau's 'Grundlagen' in the Automath System, Ph.D. thesis, Eindhoven University of Technology, Mathematical Cen- tre Tracts 83.
  71. J. W. Klop, Combinatory Reduction Systems, Mathematical Center Tracts 127.
  72. C. Kreisel, 'Functions, Ordinals, Species', Logic, Methodology anfd Philosophy of Science III (eds. B. van Rootselaar and J. Staal), North- Holland, Amsterdam.
  73. B. Lampson and R. Burstall, 'Pebble, a Kernel Language for Modules and Abstract Data Types', Information and Computation 76(2/3).
  74. D. Leivant, 'Stratified Polymorphism', Proc. of the Fourth Symp. on Logic in Computer Science, Asilomar, California, U.S.A.
  75. A. Levy, Basic Set Theory, Springer-Verlag.
  76. G. Longo and E. Mogg], Constructive Natural Deduction and Its 'Mod- est'Interpretaiion, Report CMU-CS-88-131, Computer Science Dept., Carnegie Mellon Univ.
  77. Z. Luo, R. Pollack and P. Taylor, How to Use LECO: a preliminary user's manual, LFCS Technical Notes LFCS-TN-27, Dept. of Com- puter Science, Edinburgh University.
  78. Zhaohui Luo, A Higher-order Calculus and Theory Abstraction, LFCS report ECS-LFCS-88-57, Dept. of Computer Science, Univ. of Edin- burgh.
  79. Zhaohui Luo, CC and Its Meta Theory, LFCS report ECS-LFCS- 88-58, Dept. of Computer Science, Univ. of Edinburgh.
  80. Zhaohui Luo, 'A Higher-order Calculus and Its -Set Model', circu- lated notes. Jan. 1988.
  81. Zhaohui Luo, 'ECC, an Extended Calculus of Constructions', Proc. of the Fourth Ann. Symp. on Logic in Computer Science, June 1989, Asilomar, California, U.S.A.
  82. Zhaohui Luo, 'A Higher-order Calculus and Theory Abstraction', To appear in Information and Computation.
  83. Zhaohui Luo, On Girard-Tait 's Reducibility Method for Strong Nor- malization Proofs of Type Theories, Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi, Edinburgh.
  84. D. MacQueen, 'Using Dependent Types to Express Modular Structure', Proc. 13th Principles of Programming Languages.
  85. J. McCarthy et al., Lisp 1.5 Programmer's Manual, MIT Press, Cam- bridge, Mass..
  86. J. Meseguer, Relating Models of Polymorphism, SRI-CSL-88-13, Com- puter Science Lab, SRI International.
  87. J. Mitchell and R. Harper, 'The Essence of ML', Proc. 15th Principles of Programming Languages.
  88. R. Milner, 'A Proposal for Standard ML', Proc. Symp. on Lisp and functional Programming, Austin, Texas.
  89. J.C. Mitchell, 'A Type Inference Approach to Reduction Properties and Semantics of Polymorphic Expressions', Proc. 1986 ACM Symp. on Lisp and Functional Programming. Per Martin-1,6f, A Theory of Types, manuscript. Per Martin-Löf, An Intuitionistic Theory of Types, manuscript. Per Martin-Löf, 'An Intuitionistic Theory of Types: Predicative Part', in Logic Colloquium'73, (eds.) H.Rose and J.C.Shepherdson.
  90. Per Martin-Löf, 'Constructive Mathematics and Computer Program- ming', Logic, Methodology and Philosophy of Science VI (eds., L.J. Cohen et al.). North-Holland, Amsterdam.
  91. Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis.
  92. D. Miller and C. Nadathur, 'A Logic Programming Approach to Ma- nipulating Formulas and Programs', Proc. IEEE Symp. on Logic Pro- gramming, San Francisco.
  93. E. Moggi, 'The PER-model as Internal Category with All Small Prod- ucts', manuscript.
  94. Ch. Paulin-Mohring, 'Extracting Ft" Programs from Proofs in the Cal- culus of Constructions', Proc. POPL 89.
  95. J. Mitchell and G. Plotkin, 'Abstract Types Have Existential Type', Proc. 12th Principles of Programming Languages.
  96. Z. Manna and R. Waldinger, 'Towards Automatic Program Synthesis', Communications of ACM 14.
  97. J. Myhill, 'Constructive Set Theory', J. Symbolic Logic 40.
  98. B. Nordstrom and K. Petersson, 'Types and Specifications', Proc. IFIP'83, Elsevier.
  99. B. NordstrOm, K. Petersson and J. Smith, Programming in Martin- LSf's Type Theory: an introduction, book to appear.
  100. C-E. Ore, 'Notes about the Extensions of ECC for Including Inductive (Recursive) Types', draft.
  101. L. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge University Press.
  102. L. Paulson, A Preliminary User's Manual for Isabelle, Technical Re- port 133, Computer Laboratory, Cambridge University.
  103. A. Pitts, 'Polymorphism is Set Theoretic, Constructively', Summer Conf. on Category Theory and Computer Science, Edinburgh.
  104. G. Plotkin, 'A Search Space for LF', Workshop on General Logic, Edinburgh, 1987. in LFCS Report Series, ECS-LFCS-88-52.
  105. R. Pollack, 'The Theory of LEGO', manuscript.
  106. G. Pottinger, Strong Normalization for Terms of the Theory of Con- structions, TR 11-7, Odyssey Research Associates.
  107. D. Prawitz, Natural Deduction, 'a Proof-Theoretic Study, Almqvist & Wiksell.
  108. J. C. Reynolds, 'Towards a Theory of Type Structure', Lecture Notes in Computer Science 19.
  109. J. C. Reynolds, 'Types, Abstraction and Parameter Polymorphism', Information Processing'83.
  110. J. C. Reynolds, 'Polymorphism is Not Set-theoretic', Lecture Notes in Computer Science 173.
  111. H.E. Rose, Subrecursion, Oxford University Press.
  112. J. C. Reynolds and G. D. Plotkin, On Functors Expressible in the Polymorphic Typed Lambda Calculus, LFCS report, ECS-LFCS-88- 53, Dept. of Computer Science, Univ. of Edinburgh.
  113. B. Russell, The Principles of Mathematics, Vol. I, Cambridge Univer- sity Press.
  114. A. Salvesen, 'The Church-Rosser Theorem for LF with /i reduction', manuscript.
  115. D. Sannella and R. Burstall, 'Structured Theories in LCF, 8th Col- loquium on Trees in Algebra and Programming.
  116. K. Schütte, Proof Theory, Springer-Verlag.
  117. D. Scott, 'Constructive Validity', Symp. on Automatic Demonstra- tion, Lecture Notes in Mathematics 125.
  118. R.A.G. Seely, 'Locally Cartesian Closed Categories and Type Theory,' Math. Proc. Camb. Phil. Soc. 95.
  119. R.A.C. Seely, 'Categorical Semantics for Higher-order Polymorphic Lambda Calculus', J. of Symbolic Logic, vol. 52, no. 4. Springer-Verlag.
  120. A. Salvesen and J. Smith, 'The Strength of Subset Type in Martin- Löfs Type Theory', Proc. 3rd Ann. Symp. on Logic in Computer Science, Edinburgh.
  121. D. Sannella and A. Tarlecki, Building Specifications in an Arbitrary Institution, Information and Computation 76(2/3).
  122. T. Streicher, Correctness and Completeness of a Categorical Seman- tics of the Calculus of Constructions, PhD Dissertation, Passau.
  123. W.W. Tait, 'Intensional Interpretation of Functionals of Finite Type I', J. of Symbolic Logic 32.
  124. W. W. Tait, 'A Realizability Interpretation of the Theory of Species', Logic Colloquium (ed. R. Parikh), Lecture Notes in Computer Science 453.
  125. G. Takeuti, Proof Theory, Stud. Logic 81.
  126. P. Taylor and Z. Luo, 'Theories, Mathematical Structures and Strong Sums', manuscript, Dec. 1988.
  127. A. S. Troelstra, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics 344.
  128. A. S. Troelstra, 'Notes on Intuitionistic Second-order Arithmetic Lecture Notes in Mathematics 337.
  129. D. T. van Daalen, The Language Theory of Automath, PhD Thesis. Technologicval Univ., Eindhoven.
  130. J. Zucker, 'Formalization of Classical Mathematics in AUTOMATH', Colloque Internationaux du CNRS 249, Clermont-Ferrand.