An extended calculus of constructions
1990
Abstract
This thesis presents and studies a unifying theory of dependent types ECC-Extended Calculus of Constructions. ECC integrates Coquand-Huet's (impredicative) calculus of constructions and Martin-Löf's (predicative) type theory with universes, and turns out to be a strong and expressive calculus for formalization of mathematics, structured proof development and program specification.
References (130)
- and Coquand [Coq86a] do not lead to such a simple notion of principal type. 0 Bibliography
- H.P Barendregt, The Lambda Calculus: its Syntax and Semantics, revised edition, North-Holland.
- H.P Barendregt, Typed Lambda Calculi, to appear in Handbook of Logic in Computer Science (eds., S. Abramsky, D. Gabbay and T.S.E. Maibaum), Oxford University Press.
- H.P Barendregt, 'Introduction to Generalized Type Systems', to ap- pear in Proc. of the 3rd Italian Conf. on Theoretical Computer Sci- ence, Mandera.
- C. Böhm and A. Beradurcci, 'Automatic Synthesis of Typed A- programs on Term Algebras', Theoretical Computer Science 39.
- M.J. Beeson, Foundations of Constructive Mathematics, Springer- Verlag.
- S. Berardi, Type Dependence and Constructive Mathematics, manuscript, June 1989.
- S. Berardi, Non-conservativity of Coquand's Calculus with respect to Higher-order Intuitionistic Logic, Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi, Edinburgh.
- E. Barendsen and H. Geuvers, 'Conservativity of )¼P over PRED manuscript.
- R. Burstall and J. Goguen, 'The Semantics of CLEAR, a Specification Language', Lecture Notes in Computer Science 86.
- E. Bishop, Foundations of Constructive Analysis, McGraw-Hill.
- R. Burstall and B. Lampson, 'Pebble, a Kernel Language for Modules and Abstract Data Types', Lecture Notes in Computer Science 173.
- R. Burstall and Zhaohui Luo, 'A Set-theoretic Setting for Structuring Theories in Proof Development', Circulated notes. Apr. 1988.
- R. Burstall, D. MacQueen and D. Sannella, 'HOPE: an Experimental Applicative Language', Proc. 1980 LISP Conf., California.
- R. Burstall, 'Programming with Modules as Typed Functional Pro- gramming', Proc. Inter. Conf. on Fifth Generation Computer Systems, Tokyo.
- R. Burstall, Research in Interactive Theorem Proving at Edin- burgh University, Proc. of 20th IBM Computer Science Symposium, Shizuoka, Japan. Also, LFCS Report ECS-LFCS-86-12, Dept. of Com- puter Science, Univ. of Edinburgh.
- R. Burstall, An Approach to Program Specification and Development in Constructions, Talk given in Workshop on Programming Logic, Bastad, Sweden, May 1989.
- R. Burstall, 'Computer-assisted Proof for Mathematics: an introduc- tion, using the LEGO proof system', to appear in Proc. of the Institute for Applied Math. conf., Brighton Polytechnic.
- L. Cardelli, 'A Polymorphic )-calculus with Type:Type', manuscript.
- L. Cardelli, Typeful Programming, Lecture notes for the IFIP State of the Art Seminar on Formal Description of Programming Concepts, Rio de Janeiro, Brazil.
- J. Cartmell, Generalized Algebraic Theories and Contextual Category, Ph.D. Thesis, University of Oxford.
- J. Cartmell, 'Generalized Algebraic Theories and Contextual Cate- gory', Annals of Pure and Applied Logic 32.
- H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North Holland Publishing Company.
- Th. Coquand, C. Gunter and C. Winskel, Domain Theoretic Mod- els of Polymorphism, Tech. Report No. 116, Computer Laboratory, University of Cambridge.
- Th. Coquand and C. Huet, 'Constructions:a Higher Order Proof Sys- tern for Mechanizing Mathematics', EUROCAL'85, Lecture Notes in Computer Science 203.
- Th. Coquand and G. Huet, 'The Calculus of Constructions', Informa- tion and Computation 76(2/3).
- A. Church, 'A Formulation of the Simple Theory of Types', J. Sym- bolic Logic 5(1).
- R. L. Constable, 'Constructive Mathematics and Automatic Programs Writers', Proc. IFIP'71.
- R. L. Constable et al., Implementing Mathematics with the NuPRL Proof Development System, Pretice-Hall.
- Th. Coquand, 'Une Theorie des Constructions PhD thesis, Univer- sity of Paris VII.
- Th. Coquand, 'An Analysis of Girard's Paradox', Proc. 1st Ann. Symp. on Logic in Computer Science.
- Th. Coquand, 'A Calculus of Constructions' manuscript, Nov. 1986.
- Th. Coquand, 'Metamathematical Investigations of a Calculus of Con- structions', manuscript.
- Th. Coquand and Ch. Paulin-Mohring, 'Inductively Defined Types', draft.
- L. Cardelli and P. Wegner, 'On Understanding Types, Data Abstrac- tion and Polymorphism', Computing Surveys 17.
- N. G. de Bruijn, 'Lambda Calculus Notation with Nameless Dummies: a Tool for Automatic Formula Manipulation with Application to the Church-Rosser Theorem', Indag. Mathematics 34.
- N. C. de Bruijn, 'A Name-free Lambda Calculus with Facilities for Internal Definition of Expressions and Segments', Technical Report 78-WSK-03, Eindhoven University of Technology.
- N. G. de Bruijn, 'A Survey of the Project AUTOMATH', In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal- ism, (eds., J. Hindley and J. Seldin), Academic Press.
- K. Devlin, Fundamentals of Contemporary Set Theory, Springer- Verlag.
- H. Ehrig, W. Fey and H. Hansen, ACT ONE: an Algebraic Specifi- cation Language with Two Levels of Semantics, Tech. Report 83-03, Technical University of Berlin, Fachbereich Informatik.
- T. Ehrhard, 'A Categorical Semantics of Constructions Proc. 3rd
- Ann. Symp. on Logic in Computer Science, Edinburgh.
- S. Feferman, 'Constructive Theories of Functions and Classes', in Logic Colloquium'78, (eds., M. Boffa, D. van Dalen and K. McAloon) North Holland, Amsterdam.
- K. Futatsugi, J. Goguen, J.-P. Jouannaud and J. Meseguer, Principles of OBJ2, Proc. POPL 85.
- H. Friedman, 'Set-theoretic Foundations for Constructive Analysis Annals of Mathematics 105.
- J.H. Gallier, On Girard's 'Candidats de Reductibilite", To appear in Logic and Computer Science (ed. P. Odifreddi), Academic Press.
- H. Geuvers, A Modular Proof of Strong Normalization for the Calculus of Constructions, Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi, Edinburgh, Sept. 1989.
- J.-Y. Girard, 'Une extension de l'interpretation fonctionelle de Gödel a l'analyse et son application a l'élimination des coupures dans et la thèorie des types', Proc. 2nd Scandinavian Logic Symposium.
- J.-Y. Girard, Interpretation fonctionelle et elimination des coupures de l'arithmétique d'ordre supérieur, These, Université Paris VII.
- J.-Y. Girard, 'Quelques re'sultats sur les interpretations fonctionells', Lecture Notes in Mathematics 337, Springer.
- J.-Y. Girard, 'The System F of Variable Types, Fifteen Years Later Theoretical Computer Science 45.
- J.-Y. Girard, Proofs and Types, Translated by Y. Lafont and P. Taylor, Cambridge University Press.
- M.J. Gordon, R. Milner and C.P. Wadsworth, Edinburgh LCF, Lecture Notes in Computer Science 78, Springer.
- T. Griffin, An Environment for Formal Systems, LFCS Report ECS- LFCS-87-34, Dept. of Computer Science, Univ. of Edinburgh.
- A. Grzegorczyk, 'Some Classes of Resursive Functions', Rozprawy Mate. IV, Warsaw.
- S. Hayashi, 'Constructive Mathematics and Computer-assisted Rea- soning Systems', to appear in Proc. of Heyting'88, Prenum Press.
- A. Heyting, Intuitionism: an Introduction, North-Holland.
- J. Hook and D. Howe, Impredicative Strong Existential Equivalent to Type:Type, Technical Report TR86-760, Cornell University.
- R. Harper, F. Honsell and C. Plotkin, 'A Framework for Defining Logics', Proc. 2nd Ann. Symp. on Logic in Computer Science.
- R. Harper, D. MacQueen and R. Milner, Standard ML, LFCS Report ECS-LFCS-86-2, Dept. of Computer Science, Univ. of Edinburgh.
- S. Hayashi and H. Nakano, PX: a Computational Logic, The MIT Press, Cambridge, Massachusetts.
- W. A. Howard, 'The Formulae-as-types Notion of Construction', In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (eds., J. Hindley and J. Seldin), Academic Press, 1980.
- M. Hyland and A. Pitts, 'The Theory of Constructions: Categori- cal Semantics and Topos-theoretic Models', Categories in Computer Science and Logic, Boulder.
- R. Harper and R. Pollack, 'Type Checking, Universe Polymorphism, and Typical Ambiguity in the Calculus of Constructions', To appear in Theoretical Computer Science.
- J.R. Hindley and J.P. Seldin, Introduction to Combinators and \- calculus, Cambridge University Press.
- C. Huet, 'A Calculus with Type:Type unpublished manuscript.
- G. Huet (ed.), The Calculus of Constructions: Documentation and User's Guide, Technical Report INRIA 110.
- M. Hyland, 'The Effective Topos', in The Brouwer Symposium, (eds., A.S.Troelstra and Van Dalen) North-Holland.
- M. Hyland, 'A Small Complete Category', To appear in Ann. Pure Appl. Logic.
- B. Jutting, Checking Landau's 'Grundlagen' in the Automath System, Ph.D. thesis, Eindhoven University of Technology, Mathematical Cen- tre Tracts 83.
- J. W. Klop, Combinatory Reduction Systems, Mathematical Center Tracts 127.
- C. Kreisel, 'Functions, Ordinals, Species', Logic, Methodology anfd Philosophy of Science III (eds. B. van Rootselaar and J. Staal), North- Holland, Amsterdam.
- B. Lampson and R. Burstall, 'Pebble, a Kernel Language for Modules and Abstract Data Types', Information and Computation 76(2/3).
- D. Leivant, 'Stratified Polymorphism', Proc. of the Fourth Symp. on Logic in Computer Science, Asilomar, California, U.S.A.
- A. Levy, Basic Set Theory, Springer-Verlag.
- G. Longo and E. Mogg], Constructive Natural Deduction and Its 'Mod- est'Interpretaiion, Report CMU-CS-88-131, Computer Science Dept., Carnegie Mellon Univ.
- Z. Luo, R. Pollack and P. Taylor, How to Use LECO: a preliminary user's manual, LFCS Technical Notes LFCS-TN-27, Dept. of Com- puter Science, Edinburgh University.
- Zhaohui Luo, A Higher-order Calculus and Theory Abstraction, LFCS report ECS-LFCS-88-57, Dept. of Computer Science, Univ. of Edin- burgh.
- Zhaohui Luo, CC and Its Meta Theory, LFCS report ECS-LFCS- 88-58, Dept. of Computer Science, Univ. of Edinburgh.
- Zhaohui Luo, 'A Higher-order Calculus and Its -Set Model', circu- lated notes. Jan. 1988.
- Zhaohui Luo, 'ECC, an Extended Calculus of Constructions', Proc. of the Fourth Ann. Symp. on Logic in Computer Science, June 1989, Asilomar, California, U.S.A.
- Zhaohui Luo, 'A Higher-order Calculus and Theory Abstraction', To appear in Information and Computation.
- Zhaohui Luo, On Girard-Tait 's Reducibility Method for Strong Nor- malization Proofs of Type Theories, Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi, Edinburgh.
- D. MacQueen, 'Using Dependent Types to Express Modular Structure', Proc. 13th Principles of Programming Languages.
- J. McCarthy et al., Lisp 1.5 Programmer's Manual, MIT Press, Cam- bridge, Mass..
- J. Meseguer, Relating Models of Polymorphism, SRI-CSL-88-13, Com- puter Science Lab, SRI International.
- J. Mitchell and R. Harper, 'The Essence of ML', Proc. 15th Principles of Programming Languages.
- R. Milner, 'A Proposal for Standard ML', Proc. Symp. on Lisp and functional Programming, Austin, Texas.
- J.C. Mitchell, 'A Type Inference Approach to Reduction Properties and Semantics of Polymorphic Expressions', Proc. 1986 ACM Symp. on Lisp and Functional Programming. Per Martin-1,6f, A Theory of Types, manuscript. Per Martin-Löf, An Intuitionistic Theory of Types, manuscript. Per Martin-Löf, 'An Intuitionistic Theory of Types: Predicative Part', in Logic Colloquium'73, (eds.) H.Rose and J.C.Shepherdson.
- Per Martin-Löf, 'Constructive Mathematics and Computer Program- ming', Logic, Methodology and Philosophy of Science VI (eds., L.J. Cohen et al.). North-Holland, Amsterdam.
- Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis.
- D. Miller and C. Nadathur, 'A Logic Programming Approach to Ma- nipulating Formulas and Programs', Proc. IEEE Symp. on Logic Pro- gramming, San Francisco.
- E. Moggi, 'The PER-model as Internal Category with All Small Prod- ucts', manuscript.
- Ch. Paulin-Mohring, 'Extracting Ft" Programs from Proofs in the Cal- culus of Constructions', Proc. POPL 89.
- J. Mitchell and G. Plotkin, 'Abstract Types Have Existential Type', Proc. 12th Principles of Programming Languages.
- Z. Manna and R. Waldinger, 'Towards Automatic Program Synthesis', Communications of ACM 14.
- J. Myhill, 'Constructive Set Theory', J. Symbolic Logic 40.
- B. Nordstrom and K. Petersson, 'Types and Specifications', Proc. IFIP'83, Elsevier.
- B. NordstrOm, K. Petersson and J. Smith, Programming in Martin- LSf's Type Theory: an introduction, book to appear.
- C-E. Ore, 'Notes about the Extensions of ECC for Including Inductive (Recursive) Types', draft.
- L. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge University Press.
- L. Paulson, A Preliminary User's Manual for Isabelle, Technical Re- port 133, Computer Laboratory, Cambridge University.
- A. Pitts, 'Polymorphism is Set Theoretic, Constructively', Summer Conf. on Category Theory and Computer Science, Edinburgh.
- G. Plotkin, 'A Search Space for LF', Workshop on General Logic, Edinburgh, 1987. in LFCS Report Series, ECS-LFCS-88-52.
- R. Pollack, 'The Theory of LEGO', manuscript.
- G. Pottinger, Strong Normalization for Terms of the Theory of Con- structions, TR 11-7, Odyssey Research Associates.
- D. Prawitz, Natural Deduction, 'a Proof-Theoretic Study, Almqvist & Wiksell.
- J. C. Reynolds, 'Towards a Theory of Type Structure', Lecture Notes in Computer Science 19.
- J. C. Reynolds, 'Types, Abstraction and Parameter Polymorphism', Information Processing'83.
- J. C. Reynolds, 'Polymorphism is Not Set-theoretic', Lecture Notes in Computer Science 173.
- H.E. Rose, Subrecursion, Oxford University Press.
- J. C. Reynolds and G. D. Plotkin, On Functors Expressible in the Polymorphic Typed Lambda Calculus, LFCS report, ECS-LFCS-88- 53, Dept. of Computer Science, Univ. of Edinburgh.
- B. Russell, The Principles of Mathematics, Vol. I, Cambridge Univer- sity Press.
- A. Salvesen, 'The Church-Rosser Theorem for LF with /i reduction', manuscript.
- D. Sannella and R. Burstall, 'Structured Theories in LCF, 8th Col- loquium on Trees in Algebra and Programming.
- K. Schütte, Proof Theory, Springer-Verlag.
- D. Scott, 'Constructive Validity', Symp. on Automatic Demonstra- tion, Lecture Notes in Mathematics 125.
- R.A.G. Seely, 'Locally Cartesian Closed Categories and Type Theory,' Math. Proc. Camb. Phil. Soc. 95.
- R.A.C. Seely, 'Categorical Semantics for Higher-order Polymorphic Lambda Calculus', J. of Symbolic Logic, vol. 52, no. 4. Springer-Verlag.
- A. Salvesen and J. Smith, 'The Strength of Subset Type in Martin- Löfs Type Theory', Proc. 3rd Ann. Symp. on Logic in Computer Science, Edinburgh.
- D. Sannella and A. Tarlecki, Building Specifications in an Arbitrary Institution, Information and Computation 76(2/3).
- T. Streicher, Correctness and Completeness of a Categorical Seman- tics of the Calculus of Constructions, PhD Dissertation, Passau.
- W.W. Tait, 'Intensional Interpretation of Functionals of Finite Type I', J. of Symbolic Logic 32.
- W. W. Tait, 'A Realizability Interpretation of the Theory of Species', Logic Colloquium (ed. R. Parikh), Lecture Notes in Computer Science 453.
- G. Takeuti, Proof Theory, Stud. Logic 81.
- P. Taylor and Z. Luo, 'Theories, Mathematical Structures and Strong Sums', manuscript, Dec. 1988.
- A. S. Troelstra, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics 344.
- A. S. Troelstra, 'Notes on Intuitionistic Second-order Arithmetic Lecture Notes in Mathematics 337.
- D. T. van Daalen, The Language Theory of Automath, PhD Thesis. Technologicval Univ., Eindhoven.
- J. Zucker, 'Formalization of Classical Mathematics in AUTOMATH', Colloque Internationaux du CNRS 249, Clermont-Ferrand.