Abstract
Recently, models in Computational Cognitive Neuroscience (CCN) have gained a renewed interest because they could help analyze current limitations in Artificial Intelligence (AI) and propose operational ways to address them. These limitations are related to difficulties in giving a semantic grounding to manipulated concepts, in coping with high dimensionality and in managing uncertainty. In this paper, we describe the main principles and mechanisms of these models and explain that they can be directly transferred to Computational Creativity (CC), to propose operational mechanisms but also a better understanding of what creativity is.
References (28)
- Alexandre, F., and Carrere, M. 2016. Modeling Neuromod- ulation as a Framework to Integrate Uncertainty in General Cognitive Architectures. In The Ninth Conference on Artifi- cial General Intelligence.
- Alexandre, F.; Carrere, M.; and Kassab, R. 2014. Fea- ture, Configuration, History : a bio-inspired framework for information representation in neural networks. In Interna- tional Conference on Neural Computation Theory and Ap- plications.
- Alexandre, F. 2000. Biological Inspiration for Multiple Memories Implementation and Cooperation. In In V. Kvas- nicka P. Sincak, J. Vascak and R. Mesiar, editors, Interna- tional Conference on Computational Intelligence.
- Beaty, R. E.; Benedek, M.; Silvia, P. J.; and Schacter, D. L. 2016. Creative Cognition and Brain Network Dynamics. Trends in Cognitive Sciences 20(2):87-95.
- Boden, M. A. 2009. Computer Models of Creativity. AI Magazine 30(3):23-23. Number: 3.
- Carrere, M., and Alexandre, F. 2015. A pavlovian model of the amygdala and its influence within the medial temporal lobe. Frontiers in Systems Neuroscience 9(41).
- Collins, A., and Koechlin, E. 2012. Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision- Making. PLOS Biology 10(3):e1001293+.
- Colton, S., and Wiggins, G. A. 2012. Computational Cre- ativity: The Final Frontier? In ECAI'12.
- Colton, S.; de Mantaras, R. L.; and Stock, O. 2009. Compu- tational Creativity: Coming of Age. AI Magazine 30(3):4pp.
- Craig, A. 2009. How do you feel -now? the anterior insula and human awareness. Nat. Rev. Neurosci. 10:59-70.
- Damasio, A. R.; Everitt, B. J.; and Bishop, D. 1996. The Somatic Marker Hypothesis and the Possible Func- tions of the Prefrontal Cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351(1346):1413-1420.
- Daw, N. D. 2018. Are we of two minds? Nature Neuro- science 21(11):1497-1499.
- Derdikman, D., and Moser, M.-B. 2010. A Dual Role for Hippocampal Replay. Neuron 65(5):582-584. Publisher: Elsevier.
- Dietrich, A. 2004. The cognitive neuroscience of creativity. Psychonomic Bulletin & Review 11(6):1011-1026.
- Domenech, P., and Koechlin, E. 2015. Executive control and decision-making in the prefrontal cortex. Current Opinion in Behavioral Sciences 1:101-106.
- Drumond, T. F.; Viéville, T.; and Alexandre, F. 2019. Bio- inspired Analysis of Deep Learning on Not-So-Big Data Using Data-Prototypes. Frontiers in Computational Neuro- science 12.
- Gershman, S. J., and Daw, N. D. 2017. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework. Annual Review of Psychology 68(1):101-128.
- Harnard, S. 1990. The symbol grounding problem. Physica D: Nonlinear Phenomena 42:335-346.
- Jung, R. E.; Mead, B. S.; Carrasco, J.; and Flores, R. A. 2013. The structure of creative cognition in the human brain. Frontiers in Human Neuroscience 7.
- Kounios, J., and Beeman, M. 2014. The cognitive neuro- science of insight. Annual Review of Psychology 65:71-93.
- Mattar, M. G., and Daw, N. D. 2018. Prioritized memory access explains planning and hippocampal replay. Nature Neuroscience 21(11):1609-1617.
- McClelland, J. L.; McNaughton, B. L.; and O'Reilly, R. C. 1995. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and mem- ory. Psychological review 102(3):419-457.
- Mesulam, M. 2008. Representation, inference, and tran- scendent encoding in neurocognitive networks of the human brain. Annals of Neurology 64(5):367-78.
- Nauta, W. J. 1971. The problem of the frontal lobe: A rein- terpretation. Journal of Psychiatric Research 8(3-4):167- 187. O'Reilly, R. C.; Noelle, D. C.; Braver, T. S.; and Cohen, J. D. 2002. Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cereb Cortex 12(3):246-257.
- Pezzulo, G., and Castelfranchi, C. 2009. Thinking as the control of imagination: a conceptual framework for goal- directed systems. Psychological Research 73(4):559-577.
- Pfeifer, R.; Bongard, J.; and Grand, S. 2007. How the body shapes the way we think: a new view of intelligence. Brad- ford Books. MIT Press.
- Stachenfeld, K. L.; Botvinick, M. M.; and Gershman, S. J. 2017. The hippocampus as a predictive map. Nature Neuro- science 20(11):1643-1653.
- Wang, J. X.; Kurth-Nelson, Z.; Kumaran, D.; Tirumala, D.; Soyer, H.; Leibo, J. Z.; Hassabis, D.; and Botvinick, M. 2018. Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience 21(6):860-868. Number: 6 Publisher: Nature Publishing Group. Wise, S. P. 2008. Forward Frontal Fields: Phy- logeny and Fundamental Function. Trends in neurosciences 31(12):599-608.