Academia.eduAcademia.edu

Outline

VirtualEnaction - A Platform for Systemic Neuroscience Simulation

2014, Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics

https://doi.org/10.5220/0005166701550163

Abstract

Considering the experimental study of systemic models of the brain as a whole (in contrast to models of one brain area or aspect), there is a real need for tools designed to realistically simulate these models and to experiment them. We explain here why a robotic setup is not necessarily the best choice, and what are the general requirements for such a bench-marking platform. A step further, we describe an effective solution, freely available on line and already in use to validate functional models of the brain. This solution is a digital platform where the brainy-bot implementing the model to study is embedded in a simplified but realistic controlled environment. From visual, tactile and olfactory input, to body, arm and eye motor command, in addition to vital somesthetic cues, complex survival behaviors can be experimented. The platform is also complemented with algorithmic high-level cognitive modules, making the job of building biologically plausible bots easier.

References (16)

  1. Beati, T., Carrere, M., and Alexandre, F. (2013). Which re- inforcing signals in autonomous systems? In Third In- ternational Symposium on Biology of Decision Mak- ing, Paris, France.
  2. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Morrison, A., Good- man, P. H., Harris, F. C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A. P., El Boustani, S., and Destexhe, A. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience, 23(3):349-398.
  3. Carrere, M. and Alexandre, F. (2013). Émergence de catégories par interaction entre systèmes d'apprentissage. In Preux, P. and Tommasi, M., editors, Conférence Francophone sur l'Apprentissage Automatique (CAP), Lille, France.
  4. Chemla, S., Chavane, F., Vieville, T., and Kornprobst, P. (2007). Biophysical cortical column model for optical signal analysis. BMC Neuroscience, 8(Suppl 2):P140.
  5. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W. J., and Edwards, D. H. (2010). AnimatLab: a 3D graphics environment for neuromechanical simula- tions. Journal of neuroscience methods, 187(2):280- 288.
  6. Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., and Yger, P. (2008). PyNN: A Common Interface for Neuronal Network Simulators. Frontiers in neuroinformatics, 2. Denoyelle, N. and Pouget, F. (2014). Virtualenaction, user documentation. Technical report, virtualenac- tion.gforge.inria.fr.
  7. Friston, K. (2012). A Free Energy Principle for Biological Systems. Entropy, 14(11):2100-2121.
  8. Figure 4: The platform's architecture. At the user level, only the notion of (i) game server where the environment and its mobile objects interactions are computed, (ii) game client where the game-play is rendered and (iii) brainy-bot where the brain model simulation is issued have to be taken into account.
  9. Gorojosky, R. and Alexandre, F. (2013). Models of Hippocampus for pavlovian learning. Rapport de recherche RR-8377, INRIA.
  10. Hyvärinen, A. (2009). Natural image statistics a probabilis- tic approach to early computational vision. Hardcover.
  11. Pouget, F. and Denoyelle, N. (2014). Virtualenaction, de- veloper documentation. Technical report, virtualenac- tion.gforge.inria.fr.
  12. Taouali, W., Viéville, T., Rougier, N. P., and Alexandre, F. (2011). No clock to rule them all. Journal of physiol- ogy, Paris, 105(1-3):83-90.
  13. Teftef, E., Escobar, M.-J., Astudillo, A., Carvajal, C., Ces- sac, B., Palacios, A., Viéville, T., and Alexandre, F. (2013). Modeling non-standard retinal in/out function using computer vision variational methods. Rapport de recherche RR-8217, INRIA.
  14. Uithol, S., van Rooij, I., Bekkering, H., and Haselager, P. (2012). Hierarchies in action and motor control. Jour- nal of cognitive neuroscience, 24(5):1077-1086.
  15. Viéville, T. and Crahay, S. (2004). Using an Hebbian learn- ing rule for multi-class SVM classifiers. Journal of Computational Neuroscience.
  16. Viéville, T. and Vadot, C. (2006). An improved biologically plausible trajectory generator. Technical Report 4539- 2, INRIA.