Semi-supervised learning with regularized Laplacian
2016, Optimization Methods and Software
Abstract
We study a semi-supervised learning method based on the similarity graph and Regularized Laplacian. We give convenient optimization formulation of the Regularized Laplacian method and establish its various properties. In particular, we show that the kernel of the method can be interpreted in terms of discrete and continuous time random walks and possesses several important properties of proximity measures. Both optimization and linear algebra methods can be used for efficient computation of the classification functions. We demonstrate on numerical examples that the Regularized Laplacian method is competitive with respect to the other state of the art semi-supervised learning methods.
References (40)
- Agaev, R. P. and Chebotarev, P. Y. (2001) "Spanning forests of a digraph and their appli- cations". Automation and Remote Control, 62(3), pp. 443-466.
- Andersen, R., Chung, F., and Lang, K. (2006). "Local graph partitioning using pagerank vectors". In Proceedings of IEEE FOCS 2006, pp. 475-486.
- Avrachenkov, K., Dobrynin, V., Nemirovsky, D., Pham, S.K., and Smirnova, E. (2008). "Pagerank based clustering of hypertext document collections". In Proceedings of ACM SI- GIR 2008, pp. 873-874.
- Avrachenkov, K., Gonçalves, P., Mishenin, A., and Sokol, M. (2012). "Generalized optimiza- tion framework for graph-based semi-supervised learning". In Proceedings of SIAM Confer- ence on Data Mining (SDM 2012) (Vol. 9).
- Avrachenkov, K., Gonçalves, P., and Sokol, M. (2013). "On the choice of kernel and labelled data in semi-supervised learning methods". In Algorithms and Models for the Web Graph, WAW 2013, also LNCS, Vol. 8305, pp. 56-67.
- Avrachenkov, K., Mazalov, V. and Tsynguev, B. (2015) "Beta Current Flow Centrality for Weighted Networks". In Proceedings of the 4th International Conference on Computational Social Networks (CSoNet 2015), also LNCS 9197, Chapter 19.
- Blackwell, D. (1962). "Discrete dynamic programming". The Annals of Mathematical Statis- tics, 33, pp. 719-726.
- Callut, J., Françoisse, K., Saerens, M., and Dupont, P. (2008) "Semi-supervised classifica- tion from discriminative random walks". In Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2008, Antwerp, Belgium, September 15- 19, 2008, Proceedings, Part I, ser. Lecture Notes in Computer Science / Lecture Notes on Artificial Intelligence, W. Daelemans, B. Goethals, and K. Morik, Eds., vol. 5211. Berlin- Heidelberg: Springer, pp. 162-177.
- Chapelle, O., Schölkopf, B. and Zien A. (2006). Semi-supervised learning, MIT Press.
- Chebotarev, P. Y. (1994). "Aggregation of preferences by the generalized row sum method". Mathematical Social Sciences, 27, pp. 293-320.
- Chebotarev, P. (2008). "Spanning forests and the golden ratio". Discrete Applied Mathemat- ics, 156(5), pp. 813-821.
- P. Chebotarev (2011). "The graph bottleneck identity". Advances in Applied Mathematics, 47(3), pp. 403-413.
- Chebotarev, P. Yu., and Shamis, E. V. (1997). "The matrix-forest theorem and measuring relations in small social groups". Automation and Remote Control, 58(9), pp. 1505-1514.
- Chebotarev, P. Yu., and Shamis, E. V. (1998). "On a duality between metrics and Σ- proximities". Automation and Remote Control, 59(4), pp. 608-612.
- Chebotarev, P. Yu., and Shamis, E. V. (1998). "On proximity measures for graph vertices". Automation and Remote Control, 59(10), pp. 1443-1459.
- Chebotarev, P. Yu., and Shamis, E. V. (2000). "The forest metrics of a graph and their properties". Automation and Remote Control, 61(8), pp. 1364-1373.
- Chung, F., and Yau, S. T. (1999). "Coverings, heat kernels and spanning trees". Electronic Journal of Combinatorics, 6, R12.
- Inria
- Chung, F., and Yau, S. T. (2000). "Discrete Green's functions". Journal of Combinatorial Theory, Series A, 91(1), pp. 191-214.
- Chung, F. (2007). "The heat kernel as the pagerank of a graph". PNAS, 105(50), pp. 19735- 19740.
- Chung, F. (2009). "A local graph partitioning algorithm using heat kernel pagerank". In Proceedings of WAW 2009, LNCS 5427, pp. 62-75.
- Critchley, F. (1988) "On certain linear mappings between inner-product and squared- distance matrices". Linear Algebra and its Applications, 105, pp. 91-107.
- Deza, M. M., and Laurent, (1997) Geometry of Cuts and Metrics, volume 15 of Algo- rithms and Combinatorics. Berlin: Springer.
- Fouss, F., Francoisse, K., Yen, L., Pirotte A., and Saerens, M. (2012) "An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification". Neural Networks, 31, pp. 53-72.
- Dorugade, A. V. (2014) "New ridge parameters for ridge regression". Journal of the Associ- ation of Arab Universities for Basic and Applied Sciences, 15, pp. 94-99.
- Fouss, F., Yen, L., Pirotte, A., and Saerens, M. (2006) "An experimental investigation of graph kernels on a collaborative recommendation task". In Sixth International Conference on Data Mining (ICDM'06), pp. 863-868.
- Kirkland, S. J., Neumann, M., and Shader, B. L. (1997) "Distances in weighted trees and group inverse of Laplacian matrices". SIAM J. Matrix Anal. Appl., 18, pp.827-841.
- Knuth, D. E. (1993). The Stanford GraphBase: a platform for combinatorial computing. ACM, New York, NY, USA.
- Kondor, R. I., and Lafferty, J. (2002). "Diffusion kernels on graphs and other discrete input spaces". In Proceedings of ICML, 2, pp. 315-322.
- Muniz, G. and Kibria, B. M. G. (2009) "On some ridge regression estimators: An empirical comparisons". Communications in Statistics -Simulation and Computation, 38(3), pp. 621- 630.
- Newman, M. E. J. and Girvan, M. (2004). "Finding and evaluating community structure in networks". Phys. Rev. E, 69(2):026113.
- Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic program- ming, John Wiley & Sons.
- Scheffé, H. (1952) "An analysis of variance for paired comparisons". Journal of the American Statistical Association, 47(259), pp. 381-400.
- Smola, A. J., and Kondor, R. I. (2003) "Kernels and regularization of graphs". In Proceedings of the 16th Annual Conference on Learning Theory, pp. 144-158.
- Yen, L., Saerens, M., Mantrach, A., and Shimbo, M. (2008) "A family of dissimilarity mea- sures between nodes generalizing both the shortest-path and the commutetime distances". In 14th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining, pp. 785-793.
- Zhou, D., and Burges, C. J. C. (2007) "Spectral clustering and transductive learning with multiple views". In Proceedings of ICML 2007, pp. 1159-1166.
- Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., Schölkopf, B. (2004). "Learning with local and consistency". In: Advances in Neural Information Processing Systems, 16, pp. 321-328.
- Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). "Semi-supervised learning using Gaussian fields and harmonic functions". In Proceedings of ICML 2003, Vol. 3, pp. 912-919.
- Zhu, X. (2005). "Semi-supervised learning literature survey". University of Wisconsin- Madison Research Report TR 1530.
- The NVIDIA CUDA Sparse Matrix library (cuSPARSE), https://developer.nvidia.com/cuSPARSE